Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Nov;38(11):802-9.
doi: 10.1111/j.1365-2591.2005.01020.x.

Defects in ProTaper S1 instruments after clinical use: fractographic examination

Affiliations

Defects in ProTaper S1 instruments after clinical use: fractographic examination

G S P Cheung et al. Int Endod J. 2005 Nov.

Abstract

Aim: To investigate the mode of failure of a brand of nickel-titanium instruments separated during clinical use, by detailed examination of the fracture surface.

Methodology: A total of 122 ProTaper S1 instruments were discarded from an endodontic clinic at a stomatological school in China over a period of 17 months; 28 had fractured. These fractured instruments were ultrasonically cleaned, autoclaved and then examined under a scanning electron microscope. From the lateral view the fracture was classified into 'torsional' or 'flexural'. The specimens were then re-mounted and the presence of characteristics of shear failure and fatigue striations was recorded under high-power view of the fracture surface. The difference in the mean lengths of fractured segment between the shear and fatigue groups was compared using Student's t-test.

Results: Twenty-seven separated instruments were available for analysis. Under low-power magnification, only two fell into the category of 'torsional' failure when examined laterally; the others appeared to be 'flexural'. Close examination of the fracture surface revealed the presence of fatigue striations in 18 specimens. Nine instruments (including the two putative 'torsional' failures above) fell into the shear fracture group, in which fatigue striations were absent or characteristics of shear failure of the material were found. The mean length of fractured segments resulting from fatigue failure (4.3+/-1.9 mm) was significantly greater than that for shear failure (2.5+/-0.8 mm) (P<0.001, two-sample t-test).

Conclusions: Examination of the fracture surface at high magnification is essential to reveal features that may indicate the possible origin of cracks and the mode of material failure. Macroscopic or lateral examination of separated instruments would fail to reveal the true mechanism of failure. Fatigue seems to be an important reason for the separation of rotary instruments during clinical use.

PubMed Disclaimer

Publication types

LinkOut - more resources