Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Mar;24(3):763-71.
doi: 10.1634/stemcells.2005-0137. Epub 2005 Oct 13.

Fluorescence-activated cell sorting-based purification of embryonic stem cell-derived neural precursors averts tumor formation after transplantation

Affiliations

Fluorescence-activated cell sorting-based purification of embryonic stem cell-derived neural precursors averts tumor formation after transplantation

Hitoshi Fukuda et al. Stem Cells. 2006 Mar.

Abstract

The differentiation of dopaminergic (DA) neurons from mouse embryonic stem cells (ESCs) can be efficiently induced, making these neurons a potential source for transplantation as a treatment for Parkinson's disease, a condition characterized by the gradual loss of midbrain DA neurons. One of the major persistent obstacles to the successful implementation of therapeutic ESC transplantation is the propensity of ESC-derived grafts to form tumors in vivo. To address this problem, we used fluorescence-activated cell sorting to purify mouse ESC-derived neural precursors expressing the neural precursor marker Sox1. ESC-derived, Sox1+ cells began to express neuronal cell markers and differentiated into DA neurons upon transplantation into mouse brains but did not generate tumors in this site. In contrast, Sox1- cells that expressed ESC markers frequently formed tumors in vivo. These results indicate that Sox1-based cell sorting of neural precursors prevents graft-derived tumor formation after transplantation, providing a promising strategy for cell transplantation therapy of neurodegenerative disorders.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms