Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Nov;47(11):731-8.
doi: 10.1017/S0012162205001544.

General movements in early infancy predict neuromotor development at 9 to 12 years of age

Affiliations
Free article

General movements in early infancy predict neuromotor development at 9 to 12 years of age

Sabina E Groen et al. Dev Med Child Neurol. 2005 Nov.
Free article

Abstract

Assessment of the quality of general movements (GMs) in early infancy is a powerful instrument to predict cerebral palsy (CP). The aim of the present study is to explore the value of GM assessment in predicting minor neurological dysfunction (MND) at 9 to 12 years of age. Two groups of infants were studied prospectively: 28 low-risk full-term infants (11 females, 17 males) and 24 high-risk infants, mostly born preterm (<37 weeks; 11 females, 13 males). In each group the quality of GMs (normal or abnormal) was assessed during two developmental periods: the age at which 'writhing' GMs occur (36 weeks' postmenstrual age to 7 weeks' postterm) and the age at which 'fidgety' GMs occur (8 to 17 weeks' postterm). Eight of 24 high-risk infants were diagnosed as having CP at 4 to 9 years of age. The remaining 44 children were followed-up at 9 to 12 years. In children without CP, quality of GMs at 'fidgety age' was related to neurological condition (normal, simple MND, complex MND) at follow-up (rho=0.46, p<0.01). Abnormal GMs at 'fidgety-GM age' showed a specific relationship to the development of coordination problems (chi2=6.1, p=0.01) and fine manipulative disability (Fisher, p<0.05) at 9 to 12 years. This finding supports the notion that the quality of GMs may provide information on the integrity of complex supraspinal circuitries.

PubMed Disclaimer