Two distinct mechanisms of chromatin interaction by the Isw2 chromatin remodeling complex in vivo
- PMID: 16227570
- PMCID: PMC1265836
- DOI: 10.1128/MCB.25.21.9165-9174.2005
Two distinct mechanisms of chromatin interaction by the Isw2 chromatin remodeling complex in vivo
Abstract
We have previously shown that Saccharomyces cerevisiae Isw2 complex slides nucleosomes to remodel chromatin in vivo. Our data suggested a model in which Isw2 complex binds the histone octamer and DNA separately to generate the force necessary for nucleosome movement. Here we find that the histone H4 "basic patch" is the only portion of any amino-terminal histone tail required for both target-specific association of Isw2 complex with chromatin and chromatin remodeling in vivo, whereas it is dispensable for basal levels of chromatin binding. Similarly, we find that nonremodeled chromatin structure and integrity of Isw2 complex are required only for target-specific association of Isw2 with chromatin. These data demonstrate fundamental differences between the target-specific and basal modes of chromatin binding by Isw2 complex in vivo and suggest that only the former involves contributions from DNA, histone H4, and sequence-specific DNA binding proteins. We propose a model for target recognition and chromatin remodeling by Isw2 complex in vivo.
Figures







Similar articles
-
Histone Octamer Structure Is Altered Early in ISW2 ATP-Dependent Nucleosome Remodeling.Cell Rep. 2019 Jul 2;28(1):282-294.e6. doi: 10.1016/j.celrep.2019.05.106. Cell Rep. 2019. PMID: 31269447
-
Functional role of extranucleosomal DNA and the entry site of the nucleosome in chromatin remodeling by ISW2.Mol Cell Biol. 2004 Nov;24(22):10047-57. doi: 10.1128/MCB.24.22.10047-10057.2004. Mol Cell Biol. 2004. PMID: 15509805 Free PMC article.
-
Regulation of ISW2 by concerted action of histone H4 tail and extranucleosomal DNA.Mol Cell Biol. 2006 Oct;26(20):7388-96. doi: 10.1128/MCB.01159-06. Mol Cell Biol. 2006. PMID: 17015471 Free PMC article.
-
Yeast chromatin remodeling complexes and their roles in transcription.Curr Genet. 2020 Aug;66(4):657-670. doi: 10.1007/s00294-020-01072-0. Epub 2020 Apr 1. Curr Genet. 2020. PMID: 32239283 Review.
-
ISWI complexes in Saccharomyces cerevisiae.Biochim Biophys Acta. 2004 Mar 15;1677(1-3):100-12. doi: 10.1016/j.bbaexp.2003.10.014. Biochim Biophys Acta. 2004. PMID: 15020051 Review.
Cited by
-
Concerted regulation of ISWI by an autoinhibitory domain and the H4 N-terminal tail.Elife. 2017 Jan 21;6:e21477. doi: 10.7554/eLife.21477. Elife. 2017. PMID: 28109157 Free PMC article.
-
ISWI regulates higher-order chromatin structure and histone H1 assembly in vivo.PLoS Biol. 2007 Sep;5(9):e232. doi: 10.1371/journal.pbio.0050232. PLoS Biol. 2007. PMID: 17760505 Free PMC article.
-
Regulation of ISWI involves inhibitory modules antagonized by nucleosomal epitopes.Nature. 2012 Dec 13;492(7428):280-4. doi: 10.1038/nature11625. Epub 2012 Nov 11. Nature. 2012. PMID: 23143334 Free PMC article.
-
The INO80 ATP-dependent chromatin remodeling complex is a nucleosome spacing factor.Mol Cell Biol. 2011 Feb;31(4):662-73. doi: 10.1128/MCB.01035-10. Epub 2010 Dec 6. Mol Cell Biol. 2011. PMID: 21135121 Free PMC article.
-
Identification of multiple distinct Snf2 subfamilies with conserved structural motifs.Nucleic Acids Res. 2006 May 31;34(10):2887-905. doi: 10.1093/nar/gkl295. Print 2006. Nucleic Acids Res. 2006. PMID: 16738128 Free PMC article.
References
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Molecular Biology Databases