Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Oct 17:5:134.
doi: 10.1186/1471-2407-5-134.

TP53 mutations in ovarian carcinomas from sporadic cases and carriers of two distinct BRCA1 founder mutations; relation to age at diagnosis and survival

Affiliations

TP53 mutations in ovarian carcinomas from sporadic cases and carriers of two distinct BRCA1 founder mutations; relation to age at diagnosis and survival

Pedro Kringen et al. BMC Cancer. .

Abstract

Background: Ovarian carcinomas from 30 BRCA1 germ-line carriers of two distinct high penetrant founder mutations, 20 carrying the 1675delA and 10 the 1135insA, and 100 sporadic cases were characterized for somatic mutations in the TP53 gene. We analyzed differences in relation to BRCA1 germline status, TP53 status, survival and age at diagnosis, as previous studies have not been conclusive.

Methods: DNA was extracted from paraffin embedded formalin fixed tissues for the familial cases, and from fresh frozen specimen from the sporadic cases. All cases were treated at our hospital according to protocol. Mutation analyses of exon 2-11 were performed using TTGE, followed by sequencing.

Results: Survival rates for BRCA1-familial cases with TP53 mutations were not significantly lower than for familial cases without TP53 mutations (p = 0.25, RR = 1.64, 95% CI [0.71-3.78]). Median age at diagnosis for sporadic (59 years) and familial (49 years) cases differed significantly (p < 0.001) with or without TP53 mutations. Age at diagnosis between the two types of familial carriers were not significantly different, with median age of 47 for 1675delA and 52.5 for 1135insA carriers (p = 0.245). For cases > or = 50 years at diagnosis, a trend toward longer survival for sporadic over familial cases was observed (p = 0.08). The opposite trend was observed for cases < 50 years at diagnosis.

Conclusion: There do not seem to be a protective advantage for familial BRCA1 carriers without TP53 mutations over familial cases with TP53 mutations. However, there seem to be a trend towards initial advantage in survival for familial cases compared to sporadic cases diagnosed before the age of 50 both with and without TP53 mutations. However, this trend diminishes over time and for cases diagnosed > or = 50 years the sporadic cases show a trend towards an advantage in survival over familial cases. Although this data set is small, if confirmed, this may be a link in the evidence that the differences in ovarian cancer survival reported, are not due to the type of BRCA1 mutation, but may be secondary to genetic factors shared. This may have clinical implications for follow-up such as prophylactic surgery within carriers of the two most frequent Norwegian BRCA1 founder mutations.

PubMed Disclaimer

References

    1. The Norwegian Cancer Registry Cancer in Norway 1998. The Cancer Registry of Norway. http://www.kreftregisteret.no/ - PubMed
    1. Engeland A, Haldorsen T, Tretli S, Hakulinen T, Horte LG, Luostarinen T, Magnus K, Schou G, Sigvaldason H, Storm HH, et al. Prediction of cancer incidence in the Nordic countries up to the years 2000 and 2010. A collaborative study of the five Nordic Cancer Registries. APMIS Suppl. 1993;38:1–124. - PubMed
    1. Zweemer RP, Verheijen RH, Menko FH, Gille JJ, van Diest PJ, Coebergh JW, Shaw PA, Jacobs IJ, Kenemans P. Differences between hereditary and sporadic ovarian cancer. Eur J Obstet Gynecol Reprod Biol. 1999;82:151–153. doi: 10.1016/S0301-2115(98)00218-8. - DOI - PubMed
    1. Miki Y, Swensen J, Shattuck-Eidens D, Futreal PA, Harshman K, Tavtigian S, Liu Q, Cochran C, Bennett LM, Ding W, et al. A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science. 1994;266:66–71. - PubMed
    1. Wooster R, Bignell G, Lancaster J, Swift S, Seal S, Mangion J, Collins N, Gregory S, Gumbs C, Micklem G. Identification of the breast cancer susceptibility gene BRCA2. Nature. 1995;378:789–792. doi: 10.1038/378789a0. - DOI - PubMed

Publication types

MeSH terms