Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2005 Nov;7(11):1796-808.
doi: 10.1111/j.1462-2920.2005.00886.x.

Diversity of N-acyl homoserine lactone-producing and -degrading bacteria in soil and tobacco rhizosphere

Affiliations
Comparative Study

Diversity of N-acyl homoserine lactone-producing and -degrading bacteria in soil and tobacco rhizosphere

Cathy d'Angelo-Picard et al. Environ Microbiol. 2005 Nov.

Abstract

In Gram-negative bacteria, quorum-sensing (QS) communication is mostly mediated by N-acyl homoserine lactones (N-AHSL). The diversity of bacterial populations that produce or inactivate the N-AHSL signal in soil and tobacco rhizosphere was investigated by restriction fragment length polymorphism (RFLP) analysis of amplified 16S DNA and DNA sequencing. Such analysis indicated the occurrence of N-AHSL-producing strains among the alpha-, beta- and gamma-proteobacteria, including genera known to produce N-AHSL (Rhizobium, Sinorhizobium and Pseudomonas) and novel genera with no previously identified N-AHSL-producing isolates (Variovorax, Sphingomonas and Massilia). The diversity of N-AHSL signals was also investigated in relation to the genetic diversity of the isolates. However, N-AHSL-degrading strains isolated from soil samples belonged to the Bacillus genus, while strains isolated from tobacco rhizospheres belonged to both the Bacillus genus and to the alpha subgroup of proteobacteria, suggesting that diversity of N-AHSL-degrading strains may be modulated by the presence of the tobacco plant. Among these rhizospheric isolates, novel N-AHSL-degrading genera have been identified (Sphingomonas and Bosea). As the first simultaneous analysis of both N-AHSL-degrading and -producing bacterial communities in a complex environment, this study revealed the coexistence of bacterial isolates, belonging to the same genus or species that may produce or degrade N-AHSL.

PubMed Disclaimer

Publication types

LinkOut - more resources