Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003;95(1):1-12.
doi: 10.1016/S1389-1723(03)80141-X.

Gram-negative bacterial ATP-binding cassette protein exporter family and diverse secretory proteins

Affiliations

Gram-negative bacterial ATP-binding cassette protein exporter family and diverse secretory proteins

Kenji Omori et al. J Biosci Bioeng. 2003.

Abstract

Protein translocation to the extracellular space is essential for the invasion, colonization, and survival of pathogenic gram-negative bacteria within a host organism. In addition to the N-terminal signal sequence-dependent secretion system, which is specific for protein transport to the periplasmic space, there are five major systems (type I, II, III, IV, and V) that are known to be involved in protein secretion into the extracellular space. Of the systems, the type I pathway, which is composed of three membrane components including an ATP-binding cassette (ABC) protein, translocates proteins into the extracellular space from the cytosol by directly using the energy generated from ATP hydrolysis, and therefore, the system is a member of the ABC transporter family and is also known as the ABC exporter. To date, ABC exporters have been discovered to be involved in the secretion of a wide variety of exoproteins including RTX (repeats-in-toxin) toxins, cell surface layer proteins, proteases, lipases, bacteriocins, heme-acquisition proteins, and nodulation-related proteins such as the exoglucanases of gram-negative bacteria. A secretory protein and its associated specific ABC exporter are encoded in the same gene cluster in most cases, and ABC exporters show substrate specificity for secretion. Consequently, ABC exporters are present based primarily on the number of secretory protein genes. A secretion signal is situated in the C-terminal region of secretory proteins, however, the characteristics of the secretion signal are not fully understood. Secretory substrates and their linked ABC exporters are reviewed in the following paper.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources