Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2005 Feb;99(2):136-42.
doi: 10.1263/jbb.99.136.

DnaK from Vibrio proteolyticus: complementation of a dnaK-null mutant of Escherichia coli and the role of its ATPase domain

Affiliations
Comparative Study

DnaK from Vibrio proteolyticus: complementation of a dnaK-null mutant of Escherichia coli and the role of its ATPase domain

Kazuaki Yoshimune et al. J Biosci Bioeng. 2005 Feb.

Abstract

We cloned the 4.8-kbp DNA fragment containing the dnaK gene from the chromosomal DNA of Vibrio proteolyticus. It contained four genes arranged unidirectionally in the order of grpE, gltP, dnaK and dnaJ. The DnaK gene of V. proteolyticus (VprDnaK) allowed a dnaK-null mutant of Escherichia coli (DeltadnaK52) to propagate lambda phages but not to grow at 43 degrees C. However, a chimeric DnaK gene comprising the regions corresponding to the N-terminal ATPase domain of E. coli DnaK (EcoDnaK) and the C-terminal region of VprDnaK including the substrate-binding domain, enabled the mutant to grow at 43 degrees C. The temperature dependence for the ATPase activity of the chimeric DnaK was similar to that of EcoDnaK. Fluorometric analyses showed that the chimeric DnaK is much more thermostable than EcoDnaK and VprDnaK. These findings indicate that the thermal stability of the ATPase domain of DnaK is responsible for its chaperone action at high temperatures such as 43 degrees C.

PubMed Disclaimer

Similar articles

Publication types

MeSH terms

LinkOut - more resources