Cross talking of network motifs in gene regulation that generates temporal pulses and spatial stripes
- PMID: 16236132
- DOI: 10.1111/j.1365-2443.2005.00897.x
Cross talking of network motifs in gene regulation that generates temporal pulses and spatial stripes
Abstract
Gene regulatory networks contain several substructures called network motifs, which frequently exist throughout the networks. One of such motifs found in Escherichia coli, Saccharomyces cerevisiae, and Drosophila melanogaster is the feed-forward loop, in which an effector regulates its target by a direct regulatory interaction and an indirect interaction mediated by another gene product. Here, we theoretically analyze the behavior of networks that contain feed-forward loops cross talking to each other. In response to levels of the effecter, such networks can generate multiple rise-and-fall temporal expression profiles and spatial stripes, which are typically observed in developmental processes. The mechanism to generate these responses reveals the way of inferring the regulatory pathways from experimental results. Our database study of gene regulatory networks indicates that most feed-forward loops actually cross talk. We discuss how the feed-forward loops and their cross talks can play important roles in morphogenesis.
Similar articles
-
The incoherent feed-forward loop accelerates the response-time of the gal system of Escherichia coli.J Mol Biol. 2006 Mar 10;356(5):1073-81. doi: 10.1016/j.jmb.2005.12.003. Epub 2005 Dec 19. J Mol Biol. 2006. PMID: 16406067
-
Mutual interaction in network motifs robustly sharpens gene expression in developmental processes.J Theor Biol. 2008 May 7;252(1):131-44. doi: 10.1016/j.jtbi.2008.01.027. Epub 2008 Feb 7. J Theor Biol. 2008. PMID: 18342890
-
Environmental selection of the feed-forward loop circuit in gene-regulation networks.Phys Biol. 2005 Jun;2(2):81-8. doi: 10.1088/1478-3975/2/2/001. Phys Biol. 2005. PMID: 16204860
-
Modeling transcriptional control in gene networks--methods, recent results, and future directions.Bull Math Biol. 2000 Mar;62(2):247-92. doi: 10.1006/bulm.1999.0155. Bull Math Biol. 2000. PMID: 10824430 Review.
-
cis-Regulatory networks during development: a view of Drosophila.Curr Opin Genet Dev. 2008 Dec;18(6):513-20. doi: 10.1016/j.gde.2008.09.005. Epub 2008 Oct 16. Curr Opin Genet Dev. 2008. PMID: 18929653 Review.
Cited by
-
The incoherent feed-forward loop can generate non-monotonic input functions for genes.Mol Syst Biol. 2008;4:203. doi: 10.1038/msb.2008.43. Epub 2008 Jul 15. Mol Syst Biol. 2008. PMID: 18628744 Free PMC article.
-
Observing metabolic functions at the genome scale.Genome Biol. 2007;8(6):R123. doi: 10.1186/gb-2007-8-6-r123. Genome Biol. 2007. PMID: 17594483 Free PMC article.
-
Structural discrimination of robustness in transcriptional feedforward loops for pattern formation.PLoS One. 2011 Feb 14;6(2):e16904. doi: 10.1371/journal.pone.0016904. PLoS One. 2011. PMID: 21340024 Free PMC article.
-
Evolvability of feed-forward loop architecture biases its abundance in transcription networks.BMC Syst Biol. 2012 Jan 19;6:7. doi: 10.1186/1752-0509-6-7. BMC Syst Biol. 2012. PMID: 22260237 Free PMC article.
-
From genes to patterns: a framework for modeling the emergence of embryonic development from transcriptional regulation.Front Cell Dev Biol. 2025 Mar 20;13:1522725. doi: 10.3389/fcell.2025.1522725. eCollection 2025. Front Cell Dev Biol. 2025. PMID: 40181827 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases