Removal of cyanobacterial blooms in Taihu Lake using local soils. I. Equilibrium and kinetic screening on the flocculation of Microcystis aeruginosa using commercially available clays and minerals
- PMID: 16236411
- DOI: 10.1016/j.envpol.2005.08.041
Removal of cyanobacterial blooms in Taihu Lake using local soils. I. Equilibrium and kinetic screening on the flocculation of Microcystis aeruginosa using commercially available clays and minerals
Abstract
Algal removal abilities of 26 clays/minerals were classified into three categories according to the 8-h equilibrium removal efficiency (Q8h) and removal rate at a clay loading of 0.7 g/L. Type I clays (sepiolite, talc, ferric oxide, and kaolinite) had a Q8h > 90%, a t50 (time needed to remove 50% of the algae) < 15 min, and a t80 < 2.5 h. Type II clays (6 clays) had a Q8h 50-90%, a t50 < 2.5 h, and a t80 > 2.5 h. Type III clays (14 clays) with Q8h < 50%, t50 > 8 h and t80 > 14 h had no practical value in removal of algal blooms. When the clay loading was reduced to 0.2 g/L, Q8h for all the 25 materials decreased to below 60%, except for sepiolite whose Q8h remained about 97%. The high efficiency for sepiolite to flocculate M. aeruginosa cells in freshwaters was due to the mechanism of netting and bridging effect.
Similar articles
-
Removal of cyanobacterial blooms in Taihu Lake using local soils. II. Effective removal of Microcystis aeruginosa using local soils and sediments modified by chitosan.Environ Pollut. 2006 May;141(2):201-5. doi: 10.1016/j.envpol.2005.08.042. Epub 2005 Oct 5. Environ Pollut. 2006. PMID: 16213637
-
[Kinetics and mechanism of removing Microcystis aeruginosa using clay flocculation].Huan Jing Ke Xue. 2003 Sep;24(5):1-10. Huan Jing Ke Xue. 2003. PMID: 14719252 Chinese.
-
Removal of harmful cyanobacterial blooms in Taihu Lake using local soils. III. Factors affecting the removal efficiency and an in situ field experiment using chitosan-modified local soils.Environ Pollut. 2006 May;141(2):206-12. doi: 10.1016/j.envpol.2005.08.047. Epub 2005 Oct 7. Environ Pollut. 2006. PMID: 16214277
-
Controlling harmful algal blooms through clay flocculation.J Eukaryot Microbiol. 2004 Mar-Apr;51(2):169-72. doi: 10.1111/j.1550-7408.2004.tb00541.x. J Eukaryot Microbiol. 2004. PMID: 15134251 Review.
-
Toxicological evaluation of clay minerals and derived nanocomposites: a review.Environ Res. 2015 Apr;138:233-54. doi: 10.1016/j.envres.2014.12.024. Epub 2015 Feb 28. Environ Res. 2015. PMID: 25732897 Review.
Cited by
-
Biodesalination: a case study for applications of photosynthetic bacteria in water treatment.Plant Physiol. 2014 Apr;164(4):1661-76. doi: 10.1104/pp.113.233973. Epub 2014 Mar 7. Plant Physiol. 2014. PMID: 24610748 Free PMC article. Review.
-
Cyanotoxin management and human health risk mitigation in recreational waters.Environ Monit Assess. 2014 Jul;186(7):4443-59. doi: 10.1007/s10661-014-3710-0. Epub 2014 Mar 25. Environ Monit Assess. 2014. PMID: 24664523
-
Using quartz sand to enhance the removal efficiency of M. aeruginosa by inorganic coagulant and achieve satisfactory settling efficiency.Sci Rep. 2017 Oct 19;7(1):13586. doi: 10.1038/s41598-017-14143-z. Sci Rep. 2017. PMID: 29051599 Free PMC article.
-
Algal Toxic Compounds and Their Aeroterrestrial, Airborne and other Extremophilic Producers with Attention to Soil and Plant Contamination: A Review.Toxins (Basel). 2021 Apr 29;13(5):322. doi: 10.3390/toxins13050322. Toxins (Basel). 2021. PMID: 33946968 Free PMC article. Review.
-
The performance of chitosan/montmorillonite nanocomposite during the flocculation and floc storage processes of Microcystis aeruginosa cells.Environ Sci Pollut Res Int. 2015 Jul;22(14):11148-61. doi: 10.1007/s11356-015-4412-z. Epub 2015 May 5. Environ Sci Pollut Res Int. 2015. PMID: 25940464
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical