Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2005 Oct;295(6-7):479-86.
doi: 10.1016/j.ijmm.2005.06.010.

Molecular structure of adhesin domains in Escherichia coli fimbriae

Affiliations
Review

Molecular structure of adhesin domains in Escherichia coli fimbriae

Benita Westerlund-Wikström et al. Int J Med Microbiol. 2005 Oct.

Abstract

Crystal structures of FimH, PapG, GafD, and DraE fimbrial adhesin subunits or lectin domains have been resolved. These adhesins bind to different targets and are only distantly related in amino acid sequence. The overall structures of the fimbrial lectins, however, appear similar, suggesting that the fimbrial lectins have diverged from a common scaffold. FimH, PapG and GafD are two-domain structures connected by a flexible linker, and the N-terminal adhesin domains have an elongated beta-barrel jelly roll fold that contains the receptor-binding groove. The adhesin domains differ in disulfide patterns, in size and location of the ligand-binding groove, as well as in mechanism of receptor binding. Minor sequence variations that can be either distant from, near to, or at the ligand-binding groove have profound effects on receptor binding by the fimbriae; this is particularly apparent with FimH. The existing structures give insight into the molecular basis of the diversity in fimbrial lectins.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources