Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 May;77(2):265-72.
doi: 10.1002/jbm.b.30443.

Enhanced cell-seeding into 3D porous scaffolds by use of magnetite nanoparticles

Affiliations

Enhanced cell-seeding into 3D porous scaffolds by use of magnetite nanoparticles

Kazunori Shimizu et al. J Biomed Mater Res B Appl Biomater. 2006 May.

Abstract

To engineer functional tissues, a large number of cells must be successfully seeded into scaffolds. We previously proposed a methodology for tissue engineering using magnetite nanoparticles and magnetic force, which we termed "Mag-TE." In the present study, we applied the Mag-TE technique to a cell seeding process and have termed the technique "Mag-seeding." The cell-seeding efficiency of NIH/3T3 fibroblasts (FBs) by Mag-seeding was investigated using six types of commercially available scaffolds (5 collagen sponges and 1 D,D-L,L polylactic acid sponge) having various pore sizes. FBs were magnetically labeled with our original magnetite cationic liposomes (MCLs), which have a positive surface charge, to improve adsorption onto the cell surface. FBs labeled with MCLs were seeded onto a scaffold, and a magnet (4 kG) was placed under the scaffold. Mag-seeding facilitated successful cell seeding into the deep internal space of the scaffolds. Cell-seeding efficiency increased significantly in all scaffolds when compared to those without magnetic force. Moreover, when a high-intensity magnet (10 kG) was used, cell-seeding efficiency was significantly enhanced. These results suggest that Mag-seeding is a promising approach for tissue engineering.

PubMed Disclaimer

Publication types

LinkOut - more resources