Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2005 Oct 1;39(19):7529-34.
doi: 10.1021/es050835f.

Comparative sorption and desorption of benzo[a]pyrene and 3,4,3',4'-tetrachlorobiphenyl in natural lake water containing dissolved organic matter

Affiliations
Comparative Study

Comparative sorption and desorption of benzo[a]pyrene and 3,4,3',4'-tetrachlorobiphenyl in natural lake water containing dissolved organic matter

Jarkko Akkanen et al. Environ Sci Technol. .

Abstract

The sorption and desorption of two model compounds, benzo[a]pyrene (BaP) and 3,4,3',4'-tetrachlorobiphenyl (TCBP), were studied in natural lake water with high dissolved organic matter (DOM) content using the equilibrium dialysis and Tenax extraction methods. The sorption of TCBP was lower and reached steady value more slowly than did BaP. Tenax extraction revealed at least two differently desorbing fractions for both model compounds, which also supported the conclusion that DOM-HOC associations may involve several mechanisms. The rapidly desorbing fraction may be attributed to freely dissolved and loosely sorbed compound, whereas the more strongly sorbed fraction may indicate the presence of specific binding sites. The data indicated that the association between hydrophobic organic contaminants (HOC) and DOM is not simply absorption that is solely driven by the lipophilicity of the sorbates. Although contact time had a rather negligible effect on the sorption of BaP, the proportion of desorption resistant fraction increased with time, whereas the desorption of TCBP was less affected by contact time. Steric factors may be the cause of the lower sorption and smaller desorption resistant fraction of TCBP. The results indicate potential differences in the behavior of PAHs and PCBs in the aquatic environment.

PubMed Disclaimer

Publication types

LinkOut - more resources