Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2005 Sep;59(2):309-22.
doi: 10.1007/s11103-005-8882-0.

Complete chloroplast genome sequence of Gycine max and comparative analyses with other legume genomes

Affiliations
Comparative Study

Complete chloroplast genome sequence of Gycine max and comparative analyses with other legume genomes

Christopher Saski et al. Plant Mol Biol. 2005 Sep.

Abstract

Lack of complete chloroplast genome sequences is still one of the major limitations to extending chloroplast genetic engineering technology to useful crops. Therefore, we sequenced the soybean chloroplast genome and compared it to the other completely sequenced legumes, Lotus and Medicago. The chloroplast genome of Glycine is 152,218 basepairs (bp) in length, including a pair of inverted repeats of 25,574 bp of identical sequence separated by a small single copy region of 17,895 bp and a large single copy region of 83,175 bp. The genome contains 111 unique genes, and 19 of these are duplicated in the inverted repeat (IR). Comparisons of Glycine, Lotus and Medicago confirm the organization of legume chloroplast genomes based on previous studies. Gene content of the three legumes is nearly identical. The rpl22 gene is missing from all three legumes, and Medicago is missing rps16 and one copy of the IR. Gene order in Glycine, Lotus, and Medicago differs from the usual gene order for angiosperm chloroplast genomes by the presence of a single, large inversion of 51 kilobases (kb). Detailed analyses of repeated sequences indicate that many of the Glycine repeats that are located in the intergenic spacer regions and introns occur in the same location in the other legumes and in Arabidopsis, suggesting that they may play some functional role. The presence of small repeats of psbA and rbcL in legumes that have lost one copy of the IR indicate that this loss has only occurred once during the evolutionary history of legumes.

PubMed Disclaimer

References

    1. J Mol Biol. 2001 Aug 31;311(5):1001-9 - PubMed
    1. Nat Biotechnol. 2002 Jun;20(6):581-6 - PubMed
    1. Plant Mol Biol. 2004 Jul;55(4):479-89 - PubMed
    1. Mol Gen Genet. 1988 Aug;213(2-3):513-8 - PubMed
    1. Nucleic Acids Res. 1988 Feb 11;16(3):1199 - PubMed

Publication types

LinkOut - more resources