Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Feb;74(2):359-65.
doi: 10.1095/biolreprod.105.046185. Epub 2005 Oct 26.

Equine sperm membrane phase behavior: the effects of lipid-based cryoprotectants

Affiliations

Equine sperm membrane phase behavior: the effects of lipid-based cryoprotectants

J V Ricker et al. Biol Reprod. 2006 Feb.

Abstract

The plasma membrane of sperm can undergo lipid phase separation during freezing, resulting in irreversible damage to the cell. The objective of our study was to examine the membrane phase behavior of equine spermatozoa in the absence and presence of lipid-based cryoprotectants. Biophysical properties of sperm membranes were investigated with Fourier-transform infrared spectroscopy. Compared to fresh untreated sperm, postthaw untreated sperm showed extensive lipid phase separation and rearrangement. In contrast, postthaw sperm that were cryopreserved in egg phosphatidylcholine (egg PC)- or soy phosphatidylcholine (soy PC)-based diluents showed similar lipid phase behavior to that of fresh, untreated sperm. Studies with a deuterium-labeled PC lipid (POPCd-31) suggest that exogenous lipid from the diluents are strongly associated with the sperm membrane, and scanning electron microscopy images of treated sperm show the presence of lipid aggregates on the membrane surface. Thus, the exogenous lipid does not appear to be integrated into the sperm membrane after cryopreservation. When compared to a standard egg-yolk-based diluent (INRA 82), the soy and egg PC media preserved viability and motility equally well in postthaw sperm. A preliminary fertility study determined that sperm cryopreserved in the soy PC-based medium were capable of fertilization at the same rate as sperm frozen in the conventional INRA 82 medium. Our results show that pure lipid-based diluents can prevent membrane damage during cryopreservation and perform as well as a standard egg-yolk-based diluent in preserving sperm viability, motility, and fertility.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources