Unstable microtubule capture at kinetochores depleted of the centromere-associated protein CENP-F
- PMID: 16252009
- PMCID: PMC1283947
- DOI: 10.1038/sj.emboj.7600848
Unstable microtubule capture at kinetochores depleted of the centromere-associated protein CENP-F
Abstract
Centromere protein F (CENP-F) (or mitosin) accumulates to become an abundant nuclear protein in G2, assembles at kinetochores in late G2, remains kinetochore-bound until anaphase, and is degraded at the end of mitosis. Here we show that the absence of nuclear CENP-F does not affect cell cycle progression in S and G2. In a subset of CENP-F depleted cells, kinetochore assembly fails completely, thereby provoking massive chromosome mis-segregation. In contrast, the majority of CENP-F depleted cells exhibit a strong mitotic delay with reduced tension between kinetochores of aligned, bi-oriented sister chromatids and decreased stability of kinetochore microtubules. These latter kinetochores generate mitotic checkpoint signaling when unattached, recruiting maximum levels of Mad2. Use of YFP-marked Mad1 reveals that throughout the mitotic delay some aligned, CENP-F depleted kinetochores continuously recruit Mad1. Others rebind YFP-Mad1 intermittently so as to produce 'twinkling', demonstrating cycles of mitotic checkpoint reactivation and silencing and a crucial role for CENP-F in efficient assembly of a stable microtubule-kinetochore interface.
Figures







References
-
- Ashar HR, James L, Gray K, Carr D, Black S, Armstrong L, Bishop WR, Kirschmeier P (2000) Farnesyl transferase inhibitors block the farnesylation of CENP-E and CENP-F and alter the association of CENP-E with the microtubules. J Biol Chem 275: 30451–30457 - PubMed
-
- Brummelkamp TR, Bernards R, Agami R (2002) A system for stable expression of short interfering RNAs in mammalian cells. Science 296: 550–553 - PubMed
-
- Casiano CA, Humbel RL, Peebles C, Covini G, Tan EM (1995) Autoimmunity to the cell cycle-dependent centromere protein p330d/CENP-F in disorders associated with cell proliferation. J Autoimmun 8: 575–586 - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases