Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Mar;27(9):1688-94.
doi: 10.1016/j.biomaterials.2005.09.033. Epub 2005 Oct 25.

The combined effects of crosslinking and high crystallinity on the microstructural and mechanical properties of ultra high molecular weight polyethylene

Affiliations

The combined effects of crosslinking and high crystallinity on the microstructural and mechanical properties of ultra high molecular weight polyethylene

Kathleen S Simis et al. Biomaterials. 2006 Mar.

Abstract

Ultra high molecular weight polyethylene (PE) has been used for more than forty years as the bearing surface in total joint replacements. In recent years, there have been numerous advances in processing conditions that have improved the wear resistance of this material. In particular, crosslinking has been shown to dramatically improve the wear behavior of this orthopedic polymer in simulator studies. This benefit to wear resistance, however, is accompanied by a decrease in mechanical properties such as ultimate tensile strength, ductility, toughness and fatigue resistance. This degradation to mechanical properties may have serious implications for devices with high stress concentrations or large cyclic contact stresses. Tailoring microstructure for improved structural performance is essential for implant design. In this work we examined the role of crystallinity and crosslinking on the microstructure and mechanical properties of PE. Crystallinity was increased with a high pressure process and crosslinking was obtained with gamma irradiation. Crystallinity was beneficial to fatigue crack propagation resistance and when coupled with crosslinking a polymer with both wear and fatigue resistance was obtained.

PubMed Disclaimer

Similar articles

Cited by

Publication types

Substances

LinkOut - more resources