Real-time monitoring and automatic density control of large-scale microalgal cultures using near infrared (NIR) optical density sensors
- PMID: 16253371
- DOI: 10.1016/j.jbiotec.2005.08.034
Real-time monitoring and automatic density control of large-scale microalgal cultures using near infrared (NIR) optical density sensors
Abstract
Signals from near infrared (NIR) light transmittance sensors were used for both real-time monitoring of algal biomass density in growing mass cultures (200l tubular biofences), and also as feedback in a system that controlled the density of the culture by automatic injection of fresh growth medium. When operated in a semi-continuous production mode between predefined density values, diurnal growth patterns were recorded on-line that provided information on the dynamics of the microalgal cultures with respect to environmental conditions. The bioreactor system was also programmed to operate in constant biomass density mode, thereby maintaining the culture at the optimal population density (OPD), and sustaining high biomass production levels. The system has potential for operating a dynamic density set point for microalgal cultures where the optimal population density varies as a function of ambient growing conditions.
Similar articles
-
Near-infrared spectroscopy: a tool for monitoring submerged fermentation processes using an immersion optical-fiber probe.Appl Spectrosc. 2003 Feb;57(2):132-8. doi: 10.1366/000370203321535024. Appl Spectrosc. 2003. PMID: 14610948
-
On-line multi-analyzer monitoring of biomass, glucose and acetate for growth rate control of a Vibrio cholerae fed-batch cultivation.J Biotechnol. 2005 Jan 12;115(1):67-79. doi: 10.1016/j.jbiotec.2004.07.013. J Biotechnol. 2005. PMID: 15607226
-
Maximizing algal growth in batch reactors using sequential change in light intensity.Appl Biochem Biotechnol. 2010 May;161(1-8):511-22. doi: 10.1007/s12010-009-8891-6. Epub 2010 Feb 5. Appl Biochem Biotechnol. 2010. PMID: 20135242
-
Photobioreactors for mass cultivation of algae.Bioresour Technol. 2008 Jul;99(10):4021-8. doi: 10.1016/j.biortech.2007.01.046. Epub 2007 Mar 26. Bioresour Technol. 2008. PMID: 17379512 Review.
-
On-line infrared spectroscopy for bioprocess monitoring.Appl Microbiol Biotechnol. 2010 Sep;88(1):11-22. doi: 10.1007/s00253-010-2743-8. Epub 2010 Jul 22. Appl Microbiol Biotechnol. 2010. PMID: 20652240 Review.
Cited by
-
Unlocking nature's treasure-chest: screening for oleaginous algae.Sci Rep. 2015 Jul 23;5:9844. doi: 10.1038/srep09844. Sci Rep. 2015. PMID: 26202369 Free PMC article.
-
Multi-Wavelength Based Optical Density Sensor for Autonomous Monitoring of Microalgae.Sensors (Basel). 2015 Sep 2;15(9):22234-48. doi: 10.3390/s150922234. Sensors (Basel). 2015. PMID: 26364640 Free PMC article.
-
Perspectives of fluorescence spectroscopy for online monitoring in microalgae industry.Microb Biotechnol. 2022 Jun;15(6):1824-1838. doi: 10.1111/1751-7915.14013. Epub 2022 Feb 17. Microb Biotechnol. 2022. PMID: 35175653 Free PMC article. Review.
-
The Barnacle Balanus improvisus as a Marine Model - Culturing and Gene Expression.J Vis Exp. 2018 Aug 8;(138):57825. doi: 10.3791/57825. J Vis Exp. 2018. PMID: 30148484 Free PMC article.
-
Methods for quantification of growth and productivity in anaerobic microbiology and biotechnology.Folia Microbiol (Praha). 2019 May;64(3):321-360. doi: 10.1007/s12223-018-0658-4. Epub 2018 Nov 16. Folia Microbiol (Praha). 2019. PMID: 30446943 Free PMC article. Review.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous