Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Clinical Trial
. 2005 Nov;54(11):1428-34.
doi: 10.1016/j.metabol.2005.05.006.

Labeled CO(2) production and oxidative vs nonoxidative disposal of labeled carbohydrate administered at rest

Affiliations
Clinical Trial

Labeled CO(2) production and oxidative vs nonoxidative disposal of labeled carbohydrate administered at rest

Nathalie Folch et al. Metabolism. 2005 Nov.

Abstract

Carbon isotopes (*C) have been extensively used in man to describe oxidative vs nonoxidative disposal of an exogenous load of labeled carbohydrate (*C-CHO) at rest in various experimental situations. It is hypothesized that V*CO(2) reflects *C-CHO oxidation. However, when glycogen is synthesized through the indirect pathway (which is responsible for approximately 50% of glycogen storage), *C could be lost, diluted, and exchanged in the pyruvate-lactate pool, in the pool of tricarboxylic acid cycle intermediates, as well as at the entrance of the tricarboxylic acid cycle, and along the pathway of gluconeogenesis. This could result in a lower *C/C in the glycogen stored than in the CHO administered, in an increased production of *CO(2), and, respectively, in an overestimation and an underestimation of the oxidative and nonoxidative disposal of the CHO load. Results from the present experiment offer a support to this hypothesis. Over a 10-hour period after ingestion of a (13)C-pasta meal (313+/-10 g dry mass or 258+/-8 g of glucose) in 12 healthy subjects (6 men and 6 women), exogenous CHO oxidation computed from V(13)CO(2) (recovery factor, 0.54) significantly exceeded total CHO oxidation computed by indirect respiratory calorimetry corrected for urea excretion: 154.2+/-2.6 vs 133.5+/-3.2 g. In an additional study conducted in rats, (13)C/(12)C in glycogen stores was significantly approximately 50% lower than in the (13)C-CHO ingested, over a wide range of enrichment. These results suggest that because of dilution, loss, and exchange of *C in the indirect pathway of glycogen synthesis, the oxidative vs nonoxidative disposal of exogenous *C-CHO cannot be accurately tracked from V*CO(2).

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources