Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Nov 1;77(21):6887-94.
doi: 10.1021/ac050902o.

Ultrarapid desalting of protein solutions for electrospray mass spectrometry in a microchannel laminar flow device

Affiliations

Ultrarapid desalting of protein solutions for electrospray mass spectrometry in a microchannel laminar flow device

Derek J Wilson et al. Anal Chem. .

Abstract

The adverse effects of nonvolatile salts on the electrospray (ESI) mass spectra of proteins and other biological analytes are a major obstacle for a wide range of applications. Numerous sample cleanup approaches have been devised to facilitate ESI-MS analyses. Recently developed microdialysis techniques can shorten desalting times down to several minutes, the bottleneck being diffusion of the contaminant through a semipermeable membrane. This work introduces an approach that allows the on-line desalting of macromolecule solutions within tens of milliseconds. The device does not employ a membrane; instead, it uses a two-layered laminar flow geometry that exploits the differential diffusion of macromolecular analytes and low molecular weight contaminants. To maximize desalting efficiency, diffusive exchange between the flow layers is permitted only for such a time as to allow full exchange of salt, while incurring minimal macromolecule exchange. Computer simulations and optical studies show that the device can reduce the salt concentration by roughly 1 order of magnitude, while retaining approximately 70% of the original protein concentration. Application of this approach to the on-line purification of salt-contaminated protein solutions in ESI-MS results in dramatic improvements of both the signal-to-noise ratio and the absolute signal intensity. However, efficient desalting requires the diffusion coefficients of salt and analyte to differ by roughly 1 order of magnitude or more. This technique has potential to facilitate high-throughput analyses of biological macromolecules directly from complex matrixes. In addition, it may become a valuable tool for process monitoring and for on-line kinetic studies on biological systems.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources