Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2003 Jun 1;262(1):1-15.
doi: 10.1016/S0021-9797(03)00148-6.

Electrochemical catalysis with redox polymer and polyion-protein films

Affiliations
Review

Electrochemical catalysis with redox polymer and polyion-protein films

James F Rusling et al. J Colloid Interface Sci. .

Abstract

Supramolecular redox-active assemblies on electrodes are of fundamental interest and can be used to create functioning devices such as sensors, biosensors, and bioreactors. The ability of redox-active films to mediate electron transfer reactions in 3-D dramatically increases the sensitivity with which target molecules can be determined. Metallopolyion hydrogel films immobilized on electrode surfaces exhibit many properties that are reminiscent of those shown by redox-active proteins. This review discusses the electrochemical properties and applications of such films, including mediating electron transfer between electrodes and oxidase enzymes. In addition, polyion-protein films grown layer by layer have certain advantages in device fabrication, including facilitating direct electron transfer for many proteins, mechanical stability, use of tiny amounts of protein, and control of film architecture. This review presents examples of iron heme proteins in films grown layer by layer by alternate electrostatic adsorption for catalytic reduction of hydrogen peroxide and trichloroacetic acid and for oxidation of styrene.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources