The energy landscape of modular repeat proteins: topology determines folding mechanism in the ankyrin family
- PMID: 16257414
- DOI: 10.1016/j.jmb.2005.09.078
The energy landscape of modular repeat proteins: topology determines folding mechanism in the ankyrin family
Abstract
Proteins consisting of repeating amino acid motifs are abundant in all kingdoms of life, especially in higher eukaryotes. Repeat-containing proteins self-organize into elongated non-globular structures. Do the same general underlying principles that dictate the folding of globular domains apply also to these extended topologies? Using a simplified structure-based model capturing a perfectly funneled energy landscape, we surveyed the predicted mechanism of folding for ankyrin repeat containing proteins. The ankyrin family is one of the most extensively studied classes of non-globular folds. The model based only on native contacts reproduces most of the experimental observations on the folding of these proteins, including a folding mechanism that is reminiscent of a nucleation propagation growth. The confluence of simulation and experimental results suggests that the folding of non-globular proteins is accurately described by a funneled energy landscape, in which topology plays a determinant role in the folding mechanism.
Similar articles
-
Rerouting the folding pathway of the Notch ankyrin domain by reshaping the energy landscape.J Am Chem Soc. 2008 Apr 30;130(17):5681-8. doi: 10.1021/ja0763201. Epub 2008 Apr 9. J Am Chem Soc. 2008. PMID: 18396879 Free PMC article.
-
Enhancing the stability and folding rate of a repeat protein through the addition of consensus repeats.J Mol Biol. 2007 Jan 26;365(4):1187-200. doi: 10.1016/j.jmb.2006.09.092. Epub 2006 Oct 6. J Mol Biol. 2007. PMID: 17067634 Free PMC article.
-
Folding and unfolding mechanism of highly stable full-consensus ankyrin repeat proteins.J Mol Biol. 2008 Feb 8;376(1):241-57. doi: 10.1016/j.jmb.2007.11.046. Epub 2007 Nov 22. J Mol Biol. 2008. PMID: 18164721
-
Folding landscapes of ankyrin repeat proteins: experiments meet theory.Curr Opin Struct Biol. 2008 Feb;18(1):27-34. doi: 10.1016/j.sbi.2007.12.004. Curr Opin Struct Biol. 2008. PMID: 18243686 Free PMC article. Review.
-
From artificial antibodies to nanosprings: the biophysical properties of repeat proteins.Adv Exp Med Biol. 2012;747:153-66. doi: 10.1007/978-1-4614-3229-6_10. Adv Exp Med Biol. 2012. PMID: 22949117 Review.
Cited by
-
Protein frustratometer: a tool to localize energetic frustration in protein molecules.Nucleic Acids Res. 2012 Jul;40(Web Server issue):W348-51. doi: 10.1093/nar/gks447. Epub 2012 May 29. Nucleic Acids Res. 2012. PMID: 22645321 Free PMC article.
-
Stabilizing IkappaBalpha by "consensus" design.J Mol Biol. 2007 Jan 26;365(4):1201-16. doi: 10.1016/j.jmb.2006.11.044. Epub 2006 Nov 15. J Mol Biol. 2007. PMID: 17174335 Free PMC article.
-
Modulation of folding kinetics of repeat proteins: interplay between intra- and interdomain interactions.Biophys J. 2012 Oct 3;103(7):1555-65. doi: 10.1016/j.bpj.2012.08.018. Epub 2012 Oct 2. Biophys J. 2012. PMID: 23062348 Free PMC article.
-
Folding kinetics of the cooperatively folded subdomain of the IκBα ankyrin repeat domain.J Mol Biol. 2011 Apr 22;408(1):163-76. doi: 10.1016/j.jmb.2011.02.021. Epub 2011 Feb 15. J Mol Biol. 2011. PMID: 21329696 Free PMC article.
-
Capturing coevolutionary signals inrepeat proteins.BMC Bioinformatics. 2015 Jul 2;16:207. doi: 10.1186/s12859-015-0648-3. BMC Bioinformatics. 2015. PMID: 26134293 Free PMC article.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources