Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Jan 20;281(3):1731-40.
doi: 10.1074/jbc.M510760200. Epub 2005 Oct 28.

VEGF165-binding sites within heparan sulfate encompass two highly sulfated domains and can be liberated by K5 lyase

Affiliations
Free article

VEGF165-binding sites within heparan sulfate encompass two highly sulfated domains and can be liberated by K5 lyase

Christopher J Robinson et al. J Biol Chem. .
Free article

Abstract

The vascular endothelial growth factor (VEGF) family of proteins controls the formation and growth of blood vessels. The most potent and widely expressed isoform, VEGF165, is secreted as a disulfide-linked homodimer with two identical heparin-binding sites. Interactions with heparan sulfate (HS) regulate the diffusion, half-life, and affinity of VEGF165 for its signaling receptors. We have determined a number of key HS structural features that mediate the specific binding of the VEGF165 dimer. Carboxylate groups and 2-O-, 6-O-, and N-sulfation of HS contributed to the strength of the VEGF165 interaction; however, 6-O-sulfates appeared to be particularly important. Cleavage of HS by heparinase, heparitinase, or heparanase severely reduced VEGF165 binding. In contrast, K5 lyase-cleaved HS retained significant VEGF165 affinity, suggesting that binding sites for the growth factor are present within extended stretches of sulfation. Binding studies and molecular modeling demonstrated that an oligosaccharide 6 or 7 residues long was sufficient to fully occupy the heparin-binding site of a VEGF165 monomer. The data presented are consistent with a model whereby the two heparin-binding sites of the VEGF165 dimer interact simultaneously with highly sulfated S-domain regions of the HS chain that can be linked through a stretch of transition sequence.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources