Regulation of cysteine dioxygenase degradation is mediated by intracellular cysteine levels and the ubiquitin-26 S proteasome system in the living rat
- PMID: 16262602
- PMCID: PMC1386025
- DOI: 10.1042/BJ20051510
Regulation of cysteine dioxygenase degradation is mediated by intracellular cysteine levels and the ubiquitin-26 S proteasome system in the living rat
Abstract
Mammalian metabolism of ingested cysteine is conducted principally within the liver. The liver tightly regulates its intracellular cysteine pool to keep levels high enough to meet the many catabolic and anabolic pathways for which cysteine is needed, but low enough to prevent toxicity. One of the enzymes the liver uses to regulate cysteine levels is CDO (cysteine dioxygenase). Catalysing the irreversible oxidation of cysteine, CDO protein is up-regulated in the liver in response to the dietary intake of cysteine. In the present study, we have evaluated the contribution of the ubiquitin-26 S proteasome pathway to the diet-induced changes in CDO half-life. In the living rat, inhibition of the proteasome with PS1 (proteasome inhibitor 1) dramatically stabilized CDO in the liver under dietary conditions that normally favour its degradation. Ubiquitinated CDO intermediates were also seen to accumulate in the liver. Metabolic analyses showed that PS1 had a significant effect on sulphoxidation flux secondary to the stabilization of CDO but no significant effect on the intracellular cysteine pool. Finally, by a combination of in vitro hepatocyte culture and in vivo whole animal studies, we were able to attribute the changes in CDO stability specifically to cysteine rather than the metabolite 2-mercaptoethylamine (cysteamine). The present study represents the first demonstration of regulated ubiquitination and degradation of a protein in a living mammal, inhibition of which had dramatic effects on cysteine catabolism.
Figures




Similar articles
-
The ubiquitin-proteasome system is responsible for cysteine-responsive regulation of cysteine dioxygenase concentration in liver.Am J Physiol Endocrinol Metab. 2004 Mar;286(3):E439-48. doi: 10.1152/ajpendo.00336.2003. Epub 2003 Nov 25. Am J Physiol Endocrinol Metab. 2004. PMID: 14644768
-
In vivo regulation of cysteine dioxygenase via the ubiquitin-26S proteasome system.Adv Exp Med Biol. 2006;583:37-47. doi: 10.1007/978-0-387-33504-9_4. Adv Exp Med Biol. 2006. PMID: 17153587 No abstract available.
-
Post-transcriptional regulation of cysteine dioxygenase in rat liver.Adv Exp Med Biol. 2000;483:71-85. doi: 10.1007/0-306-46838-7_7. Adv Exp Med Biol. 2000. PMID: 11787651
-
Understanding human thiol dioxygenase enzymes: structure to function, and biology to pathology.Int J Exp Pathol. 2017 Apr;98(2):52-66. doi: 10.1111/iep.12222. Epub 2017 Apr 24. Int J Exp Pathol. 2017. PMID: 28439920 Free PMC article. Review.
-
Mammalian cysteine metabolism: new insights into regulation of cysteine metabolism.J Nutr. 2006 Jun;136(6 Suppl):1652S-1659S. doi: 10.1093/jn/136.6.1652S. J Nutr. 2006. PMID: 16702335 Review.
Cited by
-
3T3-L1 adipocytes and rat adipose tissue have a high capacity for taurine synthesis by the cysteine dioxygenase/cysteinesulfinate decarboxylase and cysteamine dioxygenase pathways.J Nutr. 2009 Feb;139(2):207-14. doi: 10.3945/jn.108.099085. Epub 2008 Dec 23. J Nutr. 2009. PMID: 19106324 Free PMC article.
-
Adequate levels of dietary sulphur amino acids impart improved liver and gut health in juvenile yellowtail kingfish (Seriola lalandi).Br J Nutr. 2022 Aug 4;129(8):1-24. doi: 10.1017/S0007114522002458. Online ahead of print. Br J Nutr. 2022. PMID: 35924344 Free PMC article.
-
Synthesis of amino acid cofactor in cysteine dioxygenase is regulated by substrate and represents a novel post-translational regulation of activity.J Biol Chem. 2008 May 2;283(18):12188-201. doi: 10.1074/jbc.M800044200. Epub 2008 Feb 28. J Biol Chem. 2008. PMID: 18308719 Free PMC article.
-
Downregulation of hepatic betaine:homocysteine methyltransferase (BHMT) expression in taurine-deficient mice is reversed by taurine supplementation in vivo.Amino Acids. 2016 Mar;48(3):665-676. doi: 10.1007/s00726-015-2108-9. Epub 2015 Oct 20. Amino Acids. 2016. PMID: 26481005 Free PMC article.
-
Kinetic and Spectroscopic Investigation of the Y157F and C93G/Y157F Variants of Cysteine Dioxygenase: Dissecting the Roles of the Second-Sphere Residues C93 and Y157.Biochemistry. 2024 Jul 2;63(13):1684-1696. doi: 10.1021/acs.biochem.4c00177. Epub 2024 Jun 17. Biochemistry. 2024. PMID: 38885352 Free PMC article.
References
-
- Andine P., Orwar O., Jacobson I., Sandberg M., Hagberg H. Extracellular acidic sulfur-containing amino acids and gamma-glutamyl peptides in global ischemia: postischemic recovery of neuronal activity is paralleled by a tetrodotoxin-sensitive increase in cysteine sulfinate in the CA1 of the rat hippocampus. J. Neurochem. 1991;57:230–236. - PubMed
-
- Lehmann A. Alterations in hippocampal extracellular amino acids and purine catabolites during limbic seizures induced by folate injections into the rabbit amygdala. Neuroscience. 1987;22:573–578. - PubMed
-
- Lehmann A., Hagberg H., Orwar O., Sandberg M. Cysteine sulphinate and cysteate: mediators of cysteine toxicity in the neonatal rat brain? Eur. J. Neurosci. 1993;5:1398–1412. - PubMed
-
- Bradley H., Gough A., Sokhi R. S., Hassell A., Waring R., Emery P. Sulfate metabolism is abnormal in patients with rheumatoid arthritis. Confirmation by in vivo biochemical findings. J. Rheumatol. 1994;21:1192–1196. - PubMed
-
- Heafield M. T., Fearn S., Steventon G. B., Waring R. H., Williams A. C., Sturman S. G. Plasma cysteine and sulphate levels in patients with motor neurone, Parkinson's and Alzheimer's disease. Neurosci. Lett. 1990;110:216–220. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Molecular Biology Databases