Development of a metabolic network design and optimization framework incorporating implementation constraints: a succinate production case study
- PMID: 16263313
- DOI: 10.1016/j.ymben.2005.09.006
Development of a metabolic network design and optimization framework incorporating implementation constraints: a succinate production case study
Abstract
We have developed a pathway design and optimization scheme that accommodates genetically and/or environmentally derived operational constraints. We express the full set of theoretically optimal pathways in terms of the underlying elementary flux modes and then examine the sensitivity of the optimal yield to a wide class of physiological perturbations. Though the scheme is general it is best appreciated in a concrete context: we here take succinate production as our model system. The scheme produces novel pathway designs and leads to the construction of optimal succinate production pathway networks. The model predictions compare very favorably with experimental observations.
Similar articles
-
SSDesign: Computational metabolic pathway design based on flux variability using elementary flux modes.Biotechnol Bioeng. 2015 Apr;112(4):759-68. doi: 10.1002/bit.25498. Epub 2014 Dec 23. Biotechnol Bioeng. 2015. PMID: 25408191
-
Batch culture characterization and metabolic flux analysis of succinate-producing Escherichia coli strains.Metab Eng. 2006 May;8(3):209-26. doi: 10.1016/j.ymben.2005.11.004. Epub 2006 Jan 23. Metab Eng. 2006. PMID: 16434224
-
Genome-scale in silico aided metabolic analysis and flux comparisons of Escherichia coli to improve succinate production.Appl Microbiol Biotechnol. 2006 Dec;73(4):887-94. doi: 10.1007/s00253-006-0535-y. Epub 2006 Aug 23. Appl Microbiol Biotechnol. 2006. PMID: 16927085
-
Current advances of succinate biosynthesis in metabolically engineered Escherichia coli.Biotechnol Adv. 2017 Dec;35(8):1040-1048. doi: 10.1016/j.biotechadv.2017.09.007. Epub 2017 Sep 20. Biotechnol Adv. 2017. PMID: 28939498 Review.
-
Metabolic Engineering of TCA Cycle for Production of Chemicals.Trends Biotechnol. 2016 Mar;34(3):191-197. doi: 10.1016/j.tibtech.2015.11.002. Epub 2015 Dec 17. Trends Biotechnol. 2016. PMID: 26702790 Review.
Cited by
-
C4-Dicarboxylate Utilization in Aerobic and Anaerobic Growth.EcoSal Plus. 2016 Jun;7(1):10.1128/ecosalplus.ESP-0021-2015. doi: 10.1128/ecosalplus.ESP-0021-2015. EcoSal Plus. 2016. PMID: 27415771 Free PMC article.
-
Soft constraints-based multiobjective framework for flux balance analysis.Metab Eng. 2010 Sep;12(5):429-45. doi: 10.1016/j.ymben.2010.05.003. Epub 2010 May 27. Metab Eng. 2010. PMID: 20553945 Free PMC article.
-
Comparative multi-goal tradeoffs in systems engineering of microbial metabolism.BMC Syst Biol. 2012 Sep 26;6:127. doi: 10.1186/1752-0509-6-127. BMC Syst Biol. 2012. PMID: 23009214 Free PMC article.
-
OptForce: an optimization procedure for identifying all genetic manipulations leading to targeted overproductions.PLoS Comput Biol. 2010 Apr 15;6(4):e1000744. doi: 10.1371/journal.pcbi.1000744. PLoS Comput Biol. 2010. PMID: 20419153 Free PMC article.
-
Metabolic engineering of Escherichia coli for quinolinic acid production by assembling L-aspartate oxidase and quinolinate synthase as an enzyme complex.Metab Eng. 2021 Sep;67:164-172. doi: 10.1016/j.ymben.2021.06.007. Epub 2021 Jun 27. Metab Eng. 2021. PMID: 34192552 Free PMC article.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources