Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Dec;54(6):1397-402.
doi: 10.1002/mrm.20692.

Characterization of proteoglycan depletion in articular cartilage using two-dimensional time domain nuclear magnetic resonance

Affiliations
Free article

Characterization of proteoglycan depletion in articular cartilage using two-dimensional time domain nuclear magnetic resonance

Pierre-Jean Lattanzio et al. Magn Reson Med. 2005 Dec.
Free article

Abstract

In vitro proteoglycan (PG) depletion in the 20-40% range (enzymatic PG depletion of normal cartilage in the early osteoarthritis (OA) PG depletion range) was investigated in articular cartilage using 2D time domain NMR relaxation techniques. Spin-lattice relaxation times were measured at low fields (T(1rho)) and at high fields (T(1)) using nonselective and selective excitation pulse sequences. The short relaxation time magnetization components in T(1rho) ( approximately 8% signal) and nonselective T(1) ( approximately 5% signal) experiments were significantly altered with PG degradation. In addition, a magnetization component ( approximately 5% signal) with a "fast " T(1) approximately 7 ms was observed in the T(1) experiment involving selective excitation. This fast T(1) was at least 10 times shorter than the short T(1) in the nonselective experiment and was associated with a strong magnetization exchange mechanism between collagen and PG. The results suggest that T(1rho) and T(1) (nonselective and selective) relaxation based MRI techniques, which focus on the short relaxation time magnetization components, have the potential of detecting molecular abnormalities associated with early OA earlier than single, long relaxation time component approaches.

PubMed Disclaimer

LinkOut - more resources