Parkinson's disease-associated mutations in leucine-rich repeat kinase 2 augment kinase activity
- PMID: 16269541
- PMCID: PMC1283829
- DOI: 10.1073/pnas.0507360102
Parkinson's disease-associated mutations in leucine-rich repeat kinase 2 augment kinase activity
Abstract
Mutations in the leucine-rich repeat kinase 2 gene (LRRK2) cause late-onset Parkinson's disease (PD) with a clinical appearance indistinguishable from idiopathic PD. Initial studies suggest that LRRK2 mutations are the most common yet identified determinant of PD susceptibility, transmitted in an autosomal-dominant mode of inheritance. Herein, we characterize the LRRK2 gene and transcript in human brain and subclone the predominant ORF. Exogenously expressed LRRK2 protein migrates at approximately 280 kDa and is present largely in the cytoplasm but also associates with the mitochondrial outer membrane. Familial-linked mutations G2019S or R1441C do not have an obvious effect on protein steady-state levels, turnover, or localization. However, in vitro kinase assays using full-length recombinant LRRK2 reveal an increase in activity caused by familial-linked mutations in both autophosphorylation and the phosphorylation of a generic substrate. These results suggest a gain-of-function mechanism for LRRK2-linked disease with a central role for kinase activity in the development of PD.
Figures






Comment in
-
Leucine-rich repeat kinase 2: a new player with a familiar theme for Parkinson's disease pathogenesis.Proc Natl Acad Sci U S A. 2005 Nov 15;102(46):16535-6. doi: 10.1073/pnas.0508350102. Epub 2005 Nov 7. Proc Natl Acad Sci U S A. 2005. PMID: 16275903 Free PMC article. No abstract available.
Similar articles
-
Leucine-rich repeat kinase 2 (LRRK2): a key player in the pathogenesis of Parkinson's disease.J Neurosci Res. 2009 May 1;87(6):1283-95. doi: 10.1002/jnr.21949. J Neurosci Res. 2009. PMID: 19025767 Free PMC article. Review.
-
The G2385R variant of leucine-rich repeat kinase 2 associated with Parkinson's disease is a partial loss-of-function mutation.Biochem J. 2012 Aug 15;446(1):99-111. doi: 10.1042/BJ20120637. Biochem J. 2012. PMID: 22612223 Free PMC article.
-
Mechanistic insight into the dominant mode of the Parkinson's disease-associated G2019S LRRK2 mutation.Hum Mol Genet. 2007 Sep 1;16(17):2031-9. doi: 10.1093/hmg/ddm151. Epub 2007 Jun 20. Hum Mol Genet. 2007. PMID: 17584768
-
14-3-3 binding to LRRK2 is disrupted by multiple Parkinson's disease-associated mutations and regulates cytoplasmic localization.Biochem J. 2010 Sep 15;430(3):393-404. doi: 10.1042/BJ20100483. Biochem J. 2010. PMID: 20642453 Free PMC article.
-
LRRK2 in Parkinson's disease: protein domains and functional insights.Trends Neurosci. 2006 May;29(5):286-93. doi: 10.1016/j.tins.2006.03.006. Epub 2006 Apr 17. Trends Neurosci. 2006. PMID: 16616379 Review.
Cited by
-
Long-term inhibition of mutant LRRK2 hyper-kinase activity reduced mouse brain α-synuclein oligomers without adverse effects.NPJ Parkinsons Dis. 2022 Sep 10;8(1):115. doi: 10.1038/s41531-022-00386-9. NPJ Parkinsons Dis. 2022. PMID: 36088364 Free PMC article.
-
Lrrk regulates the dynamic profile of dendritic Golgi outposts through the golgin Lava lamp.J Cell Biol. 2015 Aug 3;210(3):471-83. doi: 10.1083/jcb.201411033. Epub 2015 Jul 27. J Cell Biol. 2015. PMID: 26216903 Free PMC article.
-
LRRK2 dephosphorylation increases its ubiquitination.Biochem J. 2015 Jul 1;469(1):107-20. doi: 10.1042/BJ20141305. Epub 2015 May 5. Biochem J. 2015. PMID: 25939886 Free PMC article.
-
Combined exposure to Maneb and Paraquat alters transcriptional regulation of neurogenesis-related genes in mice models of Parkinson's disease.Mol Neurodegener. 2012 Sep 28;7:49. doi: 10.1186/1750-1326-7-49. Mol Neurodegener. 2012. PMID: 23017109 Free PMC article.
-
Type II kinase inhibitors show an unexpected inhibition mode against Parkinson's disease-linked LRRK2 mutant G2019S.Biochemistry. 2013 Mar 12;52(10):1725-36. doi: 10.1021/bi3012077. Epub 2013 Mar 1. Biochemistry. 2013. PMID: 23379419 Free PMC article.
References
-
- Funayama, M., Hasegawa, K., Kowa, H., Saito, M., Tsuji, S. & Obata, F. (2002) Ann. Neurol. 51, 296-301. - PubMed
-
- Zimprich, A., Biskup, S., Leitner, P., Lichtner, P., Farrer, M., Lincoln, S., Kachergus, J., Hulihan, M., Uitti, R. J., Calne, D. B., et al. (2004) Neuron 44, 601-607. - PubMed
-
- Paisan-Ruiz, C., Jain, S., Evans, E. W., Gilks, W. P., Simon, J., van der Brug, M., Lopez de Munain, A., Aparicio, S., Gil, A. M., Khan, N., et al. (2004) Neuron 44, 595-600. - PubMed
-
- Nichols, W. C., Pankratz, N., Hernandez, D., Paisan-Ruiz, C., Jain, S., Halter, C. A., Michaels, V. E., Reed, T., Rudolph, A., Shults, C. W., et al. (2005) Lancet 365, 410-412. - PubMed
-
- Di Fonzo, A., Rohe, C. F., Ferreira, J., Chien, H. F., Vacca, L., Stocchi, F., Guedes, L., Fabrizio, E., Manfredi, M., Vanacore, N., et al. (2005) Lancet 365, 412-415. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Molecular Biology Databases
Research Materials