Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Nov 15;175(10):6465-72.
doi: 10.4049/jimmunol.175.10.6465.

Pharmacological inhibition of endotoxin responses is achieved by targeting the TLR4 coreceptor, MD-2

Affiliations

Pharmacological inhibition of endotoxin responses is achieved by targeting the TLR4 coreceptor, MD-2

Alberto Visintin et al. J Immunol. .

Abstract

The detection of Gram-negative LPS depends upon the proper function of the TLR4-MD-2 receptor complex in immune cells. TLR4 is the signal transduction component of the LPS receptor, whereas MD-2 is the endotoxin-binding unit. MD-2 appears to activate TLR4 when bound to TLR4 and ligated by LPS. Only the monomeric form of MD-2 was found to bind LPS and only monomeric MD-2 interacts with TLR4. Monomeric MD-2 binds TLR4 with an apparent Kd of 12 nM; this binding avidity was unaltered in the presence of endotoxin. E5564, an LPS antagonist, appears to inhibit cellular activation by competitively preventing the binding of LPS to MD-2. Depletion of endogenous soluble MD-2 from human serum, with an immobilized TLR4 fusion protein, abrogated TLR4-mediated LPS responses. By determining the concentration of added-back MD-2 that restored normal LPS responsiveness, the concentration of MD-2 was estimated to be approximately 50 nM. Similarly, purified TLR4-Fc fusion protein, when added to the supernatants of TLR4-expressing cells in culture, inhibited the interaction of MD-2 with TLR4, thus preventing LPS stimulation. The ability to inhibit the effects of LPS as a result of the binding of TLR4-Fc or E5564 to MD-2 highlights MD-2 as the logical target for drug therapies designed to pharmacologically intervene against endotoxin-induced disease.

PubMed Disclaimer

Publication types

MeSH terms