Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Sep;46(5):877-87.
doi: 10.1536/ihj.46.877.

Pharmacological preconditioning with bradykinin affords myocardial protection through NO-dependent mechanisms

Affiliations
Free article

Pharmacological preconditioning with bradykinin affords myocardial protection through NO-dependent mechanisms

Hiroshi Yoshida et al. Int Heart J. 2005 Sep.
Free article

Abstract

Bradykinin (BK) is one of the triggers of ischemic preconditioning. Protein kinase C (PKC) and mitochondrial ATP-dependent potassium (K(ATP)) channels are central factors in cardioprotection afforded by BK. However, the role of nitric oxide (NO) in the early phase protection of preconditioning with BK is not well understood. We assessed the signaling pathway of the early phase protection of pharmacological preconditioning afforded by BK. Isolated perfused rat hearts (n = 8/group) were subjected to 30-minute global ischemia and 50-minute reperfusion. Left ventricular systolic pressure (LVSP) was recorded prior to the global ischemia and at the end of reperfusion. Preconditioning with BK was induced by two cycles of 5-minute infusion of BK (0.5 micromol/L) and 5-minute washout prior to the global ischemia. To examine participants in the signaling pathway, 5-hydroxydecanoate (5-HD, 200 micromol/L), chelerythrine (CH, 5 micromol/L), or N(omega)-nitro-L-arginine methyl ester (L-NAME, 50 mmol/L) was added to the perfusate for 5 minutes prior to the infusion of BK. Pharmacological preconditioning by BK improved postischemic recovery of LVSP (+ 45.1% versus control, P < 0.01). Protection by BK was abolished by coadministration of CH, 5-HD, or L-NAME. BK affords myocardial protection in the early phase of pharmacological preconditioning through a pathway that includes endogenous NO, PKC, and mitochondrial K(ATP) channels.

PubMed Disclaimer

MeSH terms