Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Dec;14(6):1565-9.

Vascular endothelial growth factor and soluble FLT-1 receptor interactions and biological implications

Affiliations
  • PMID: 16273257

Vascular endothelial growth factor and soluble FLT-1 receptor interactions and biological implications

Maciej Malecki et al. Oncol Rep. 2005 Dec.

Abstract

Vascular endothelial growth factor (VEGF), binding to an appropriate receptor like FLT, is the main mitogen for endothelial cells and a strong inducer of angiogenesis. A soluble form of VEGF receptor, sFLT-1, specifically binds VEGF and inhibits its activity. The following expression plasmids were used in the experiments: pVEGF plasmid encoding VEGF165, pFGF-2 encoding FGF-2 and psFLT-1 plasmid encoding the soluble form of VEGF receptor, sFLT-1. The interaction between VEGF and sFLT-1 was evaluated using a migration test and ERK1/2 activity utilizing mouse sarcoma cells (L-1). Implication of the VEGF/sFLT-1 action was also visualized using in vivo angiogenesis assay. The conditioned medium (CM) from L-1 phVEGF-165 transfectants stimulated L-1 cell migration more than medium from non-transfected L-1 cells. Media collected from phVEGF-165 transfectants or original L-1 cells only slightly stimulated the migration of cells transfected with psFLT-1. The L-1 cells also showed intensive phospho-ERK1/2 activity when treated with the CM from VEGF transfectants. In vivo tests showed that sFLT-1 effectively suppressed VEGF-mediated angiogenesis without affecting FGF-2-driven angiogenesis. To summarize, this study documented that sFLT-1 released from transfected cells might inhibit cell functions induced by VEGF, but not by FGF. The results obtained from in vivo angiogenesis tests also confirm the antiangiogenic potency of cloned sFLT-1, which can be useful for planning cancer experimental therapy studies.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

Substances

LinkOut - more resources