Ischemic preconditioning inhibits development of edematous cerulein-induced pancreatitis: involvement of cyclooxygenases and heat shock protein 70
- PMID: 16273606
- PMCID: PMC4436717
- DOI: 10.3748/wjg.v11.i38.5958
Ischemic preconditioning inhibits development of edematous cerulein-induced pancreatitis: involvement of cyclooxygenases and heat shock protein 70
Abstract
Aim: To determine whether ischemic preconditioning (IP) affects the development of edematous cerulein-induced pancreatitis and to assess the role of cyclooxygenase-1 (COX-1), COX-2, and heat shock protein 70 (HSP 70) in this process.
Methods: In male Wistar rats, IP was performed by clamping of celiac artery (twice for 5 min at 5-min intervals). Thirty minutes after IP or sham operation, acute pancreatitis was induced by cerulein. Activity of COX-1 or COX-2 was inhibited by resveratrol or rofecoxib, respectively (10 mg/kg).
Results: IP significantly reduced pancreatic damage in cerulein-induced pancreatitis as demonstrated by the improvement of pancreas histology, reduction in serum lipase and poly-C ribonuclease activity, and serum concentration of pro-inflammatory interleukin (IL)-1beta. Also, IP attenuated the pancreatitis-evoked fall in pancreatic blood flow and pancreatic DNA synthesis. Serum level of anti-inflammatory IL-10 was not affected by IP. Cerulein-induced pancreatitis and IP increased the content of HSP 70 in the pancreas. Maximal increase in HSP 70 was observed when IP was combined with cerulein-induced pancreatitis. Inhibition of COXs, especially COX-2, reduced the protective effect of IP in edematous pancreatitis.
Conclusion: Our results indicate that IP reduces pancreatic damage in cerulein-induced pancreatitis and this effect, at least in part, depends on the activity of COXs and pancreatic production of HSP 70.
Figures
References
-
- Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation. 1986;74:1124–1136. - PubMed
-
- Kato H, Liu Y, Kogure K, Kato K. Induction of 27-kDa heat shock protein following cerebral ischemia in a rat model of ischemic tolerance. Brain Res. 1994;634:235–244. - PubMed
-
- Turman MA, Bates CM. Susceptibility of human proximal tubular cells to hypoxia: effect of hypoxic preconditioning and comparison to glomerular cells. Ren Fail. 1997;19:47–60. - PubMed
-
- Kume M, Yamamoto Y, Saad S, Gomi T, Kimoto S, Shimabukuro T, Yagi T, Nakagami M, Takada Y, Morimoto T, et al. Ischemic preconditioning of the liver in rats: implications of heat shock protein induction to increase tolerance of ischemia-reperfusion injury. J Lab Clin Med. 1996;128:251–258. - PubMed
-
- Mounsey RA, Pang CY, Boyd JB, Forrest C. Augmentation of skeletal muscle survival in the latissimus dorsi porcine model using acute ischemic preconditioning. J Otolaryngol. 1992;21:315–320. - PubMed
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
Research Materials
