Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Nov 1;11(21):7749-56.
doi: 10.1158/1078-0432.CCR-05-0876.

Mesenchymal stem cell targeting of microscopic tumors and tumor stroma development monitored by noninvasive in vivo positron emission tomography imaging

Affiliations

Mesenchymal stem cell targeting of microscopic tumors and tumor stroma development monitored by noninvasive in vivo positron emission tomography imaging

Shih-Chieh Hung et al. Clin Cancer Res. .

Erratum in

  • Clin Cancer Res. 2006 Jul 15;12(14 Pt 1):4364. Dosage error in article text

Abstract

The aim of this study was to assess the efficacy human mesenchymal stem cells (hMSC) for targeting microscopic tumors and suicide gene or cytokine gene therapy. Immunodeficient mice were transplanted s.c. with human colon cancer cells of HT-29 Inv2 or CCS line, and 3 to 4 days later, i.v. with "tracer" hMSCs expressing herpes simplex virus type 1 thymidine kinase (HSV1-TK) and enhanced green fluorescent protein (EGFP) reporter genes. Subsequently, these tumors were examined for specificity and magnitude of HSV1-TK(+), EGFP(+) stem cell engraftment and proliferation in tumor stroma by in vivo positron emission tomography (PET) with (18)F-labeled 9-(4-fluoro-3-hydroxymethylbutyl)-guanine ([(18)F]-FHBG). In vivo PET images of tumors growing for 4 weeks showed the presence of HSV1-TK(+) tumor stroma with an average of 0.36 +/- 0.24% ID/g [(18)F]-FHBG accumulation. In vivo imaging results were validated by in situ correlative histochemical, immunofluorescent, and cytometric analyses, which revealed EGFP expression in vWF(+) and CD31(+) endothelial cells of capillaries and larger blood vessels, in germinal layer of dermis and hair follicles proximal to the s.c. tumor site. These differentiated HSV1-TK(+), GFP(+) endothelial cells had limited proliferative capacity and a short life span of <2 weeks in tumor fragments transplanted into secondary hosts. We conclude that hMSCs can target microscopic tumors, subsequently proliferate and differentiate, and contribute to formation of a significant portion of tumor stroma. PET imaging should facilitate clinical translation of stem cell-based anticancer gene therapeutic approaches by providing the means for in vivo noninvasive whole-body monitoring of trafficking, tumor targeting, and proliferation of HSV1-tk-expressing "tracer" hMSCs in tumor stroma.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources