Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1975 Jan;34(1):89-95.

Neuronal--glial interactions during development and aging

  • PMID: 162799
Review

Neuronal--glial interactions during development and aging

A Vernadakis. Fed Proc. 1975 Jan.

Abstract

Integration of the central nervous system is an expression of cerebral homeostasis that is essential for the internal ability of the organism to adapt to its changing environment throughout life. It is generally accepted that neurons undergo no further division after differentiation, whereas glial cells continue to proliferate throughout life. The increase in glial cells with advanced age may reflect a compensatory process of the brain to overcome neuronal loss or neuronal functional changes that may occur with age. Therefore, these neuronal-glial interactions during development and aging may play a key role in the integrative capacity of the brain. One of the mechanisms contributing to brain stability is the blood-brain barrier, which regulates the neuronal-glial microenvironment in the mature organism. Neuronal intercommunication is mediated via neurotransmitter substances and a shift may occur from excitation to inhibition and vice versa in some CNS areas with aging. Studies of some aspects of cholinergic, monoaminergic and amino acid neurotransmission show that their maturational patterns are CNS-area specific and that some neurotransmitter processes decline with advanced age. Glial cells, besides participating in the regulation of extraneuronal environment, are also proposed to be involved in neurotransmission mechanisms in the adult and aging CNS and since they are the major CNS cellular compartment that changes with age they may thus contribute significantly to the maintenance of CNS integrative ability and adaptation with age.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms