Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005;27(3):337-46.
doi: 10.1385/JMN:27:3:337.

Impairment of long-term potentiation in the CA1, but not dentate gyrus, of the hippocampus in Obese Zucker rats: role of calcineurin and phosphorylated CaMKII

Affiliations

Impairment of long-term potentiation in the CA1, but not dentate gyrus, of the hippocampus in Obese Zucker rats: role of calcineurin and phosphorylated CaMKII

Korem H Alzoubi et al. J Mol Neurosci. 2005.

Abstract

Obese Zucker rat (OZR) is a genetic model of obesity with noninsulin-dependent diabetes and hypertension. The OZR exhibit hyperinsulinemia, hyperlipidmia, and high circulating glucocorticoid levels. We have shown previously that long-term potentiation (LTP) is impaired in the CA1 region of the hippocampus of OZR. In the present work, although electrophysiological recording from anesthetized OZR hippocampus showed impaired LTP in the CA1, an intact LTP was recorded in the dentate gyrus (DG) region of the hippocampus of the same OZR. Thus, LTP is differentially impaired in the CA1 compared with the DG region of OZR hippocampus. Immunoblotting was used to investigate the molecular mechanism responsible for impairment of LTP in the CA1 but not in the DG region. Analysis revealed reduction in the levels of phosphorylated calcium-dependent calmodulin kinase II (P-CaMKII) and total CaMKII in the CA1 region of OZR. However, in the DG region, reduction was observed only in the levels of total CaMKII, with no change in P-CaMKII levels. The ratio of P-CaMKII to total CaMKII was increased in the DG but not in the CA1 area of hippocampus of OZR. Although unchanged in the CA1, calcineurin levels were significantly reduced in the DG of OZR. These findings suggest that the DG might possess a compensatory mechanism whereby calcineurin levels are reduced to allow sufficient P-CaMKII to produce an apparently normal LTP in the DG area of OZR hippocampus.

PubMed Disclaimer

References

    1. Neuroscience. 2003;117(4):869-74 - PubMed
    1. Br Med Bull. 1994 Apr;50(2):342-55 - PubMed
    1. Nature. 1989 Aug 17;340(6234):554-7 - PubMed
    1. Neurosci Res. 2000 Sep;38(1):3-17 - PubMed
    1. Neurosci Lett. 1992 Feb 3;135(2):231-4 - PubMed

Publication types

Substances

LinkOut - more resources