Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2005 Nov-Dec;12(6):562-72.
doi: 10.1097/01.mjt.0000178769.52610.69.

Advanced glycation end products and diabetic nephropathy

Affiliations
Review

Advanced glycation end products and diabetic nephropathy

Merlin C Thomas et al. Am J Ther. 2005 Nov-Dec.

Abstract

Chronic hyperglycemia and oxidative stress in diabetes results in the formation and accumulation advanced glycation end products (AGEs). AGEs have a wide range of chemical, cellular, and tissue effects that contribute to the development of microvascular complications. In particular, AGEs appear to have a key role in the diabetic nephropathy. Their importance as downstream mediators of tissue injury in diabetic kidney disease is demonstrated by animal studies using inhibitors of advanced glycation to retard the development of nephropathy without directly influencing glycemic control. AGE modification of proteins may produce in changes charge, solubility, and conformation leading to molecular dysfunction as well as disrupting interactions with other proteins. AGEs also interact with specific receptors and binding proteins to influence the renal expression of growth factors and cytokines, implicated in the progression of diabetic renal disease. The effects of AGEs appears to be synergistic with other pathogenic pathways in diabetes including oxidative stress, hypertension, and activation of the renin-angiotensin system. Each of these pathways may be activated by AGEs, and each may promote the formation of AGEs in the vicious cycle associated with progressive renal damage. It is likely that therapies that inhibit the formation of AGEs or remove established AGE modifications will form an important component part of future therapy in patients with diabetes, acting in concert with conventional approaches to prevent diabetic renal injury.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources