Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2005 Nov 10:3:63.
doi: 10.1186/1477-7827-3-63.

Zebrafish sex determination and differentiation: involvement of FTZ-F1 genes

Affiliations
Review

Zebrafish sex determination and differentiation: involvement of FTZ-F1 genes

Jonas von Hofsten et al. Reprod Biol Endocrinol. .

Abstract

Sex determination is the process deciding the sex of a developing embryo. This is usually determined genetically; however it is a delicate process, which in many cases can be influenced by environmental factors. The mechanisms controlling zebrafish sex determination and differentiation are not known. To date no sex linked genes have been identified in zebrafish and no sex chromosomes have been identified. However, a number of genes, as presented here, have been linked to the process of sex determination or differentiation in zebrafish. The zebrafish FTZ-F1 genes are of central interest as they are involved in regulating interrenal development and thereby steroid biosynthesis, as well as that they show expression patterns congruent with reproductive tissue differentiation and function. Zebrafish can be sex reversed by exposure to estrogens, suggesting that the estrogen levels are crucial during sex differentiation. The Cyp19 gene product aromatase converts testosterone into 17 beta-estradiol, and when inhibited leads to male to female sex reversal. FTZ-F1 genes are strongly linked to steroid biosynthesis and the regulatory region of Cyp19 contains binding sites for FTZ-F1 genes, further linking FTZ-F1 to this process. The role of FTZ-F1 and other candidates for zebrafish sex determination and differentiation is in focus of this review.

PubMed Disclaimer

Figures

Figure 1
Figure 1
General structure of zebrafish FTZ-F1 proteins. The zebrafish FTZ-F1 proteins consist of four main regions, the modulator domain, DNA-binding domain (DBD), hinge region and the ligand-binding domain. The DBD contains a Zink-finger region, an A- and P-box for recognition of the FTZ-F1 response element, and a T-box for stabilising the DNA-binding. The proximal repressive- and interactive domains (PRD and PID) are used for interactions with co-repressors and co-activators. The ligand binding-domain containing the I-box and AF-2 region, which both are involved in ligand binding and transactivation, and a distal repressive domain (DRD) for co-repressor binding.
Figure 2
Figure 2
NR5A sequence similarity analysis displayed in a radial tree. Clades containing subgroups NR5A1, NR5A2, NR5A3 and NR5A4 are indicated. Arctic char FF1a (acFF1a); Mouse LRH-1 (mLRH-1); Rat SF-1 (rSF-1); Mouse ELP (mELP); Rana rugosa FTZ-F1 (rrFTZ-F1); Zebrafish ff1b (zff1b); Zebrafish ff1a (zff1a); Zebrafish ff1c (zff1c); Zebrafish ff1d (zff1d); Rat FTF (rFTF); Medaka FTZ-F1 (mFTZ-F1); Rainbow trout FTZ-F1 (rtFTZ-F1); Chick SF-1 (cSF-1); Chick FTF (cFTF) and Drosophila melanogaster ftz-f1 (dmFTZ-F1). Modified from [42].
Figure 3
Figure 3
Tissue distribution of ff1a, ff1b, ff1c and ff1d in adult zebrafish, detected by RT-PCR. The four ff1 genes show differential expression with the ff1a gene being expressed in most tissues with high expression in liver. The ff1b and ff1d genes are both expressed in gonads and brain with the ff1d showing higher expression in testis than in ovary. The ff1c gene is primarily expressed in the liver. m: male tissue, f: female tissue. Modified from [42].
Figure 4
Figure 4
Involvement of a hierarchy of genes in mammalian sex determination and differentiation. In XY/XX systems where SRY is the key regulator of sex determination its absence leads to activation of Dax1 and female development. The presence of SRY results in a hierarchy of activation of genes leading to the development of testis. In this hierarchy SF-1 (FTZ-F1) is a key regulator of steroidogenesis and AMH, demonstrating its central role in sex determination and differentiation. ⊥: Inhibition, ↓: stimulation.
Figure 5
Figure 5
A generalized model of the involvement of different genes in zebrafish sex determination and differentiation. While little is known of the hierarchy of genes involved in zebrafish sex determination and differentiation several genes have been identified. While aromatase has been shown to play a central role in zebrafish sex differentiation the environmental and/or genetic mechanisms have not been fully elucidated. ⊥: Inhibition, ↓: stimulation.

Similar articles

Cited by

References

    1. Thorgaard GH. Heteromorphic sex chromosomes in male rainbow trout. Science. 1977;196:900–902. - PubMed
    1. Thorgaard GH. Sex chromosomes in the sockeye salmon: a Y-autosome fusion. Can J Genet Cytol. 1978;20:349–354. - PubMed
    1. Phillips RB, Ihssen PE. Identification of sex chromosomes in lake trout (Salvelinus namaycush) Cytogenet Cell Genet. 1985;39:14–18. - PubMed
    1. Volff JN, Schartl M. Variability of genetic sex determination in poeciliid fishes. Genetica. 2001;111:101–110. doi: 10.1023/A:1013795415808. - DOI - PubMed
    1. Kallman KD. Evidence for the existence of transformer genes for sex in the teleost Xiphophorus maculatus. Genetics. 1968;60:811–828. - PMC - PubMed

Publication types

MeSH terms

Substances

LinkOut - more resources