Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Mar;100(3):1019-26.
doi: 10.1152/japplphysiol.00388.2005. Epub 2005 Nov 10.

Effects of arterial hypotension on microvascular oxygen exchange in contracting skeletal muscle

Affiliations
Free article

Effects of arterial hypotension on microvascular oxygen exchange in contracting skeletal muscle

Brad J Behnke et al. J Appl Physiol (1985). 2006 Mar.
Free article

Abstract

In healthy animals under normotensive conditions (N), contracting skeletal muscle perfusion is regulated to maintain microvascular O2 pressures (PmvO2) at levels commensurate with O2 demands. Hypovolemic hypotension (H) impairs muscle contractile function; we tested whether this condition would alter the matching of O2 delivery (Qo2) to O2 utilization (Vo2), as determined by PmvO2 at the onset of muscle contractions. PmvO2 in the spinotrapezius muscles of seven female Sprague-Dawley rats (280+/-6 g) was measured every 2 s across the transition from rest to 1-Hz twitch contractions. Measurements were made under N (mean arterial pressure, 97+/-4 mmHg) and H (induced by arterial section; mean arterial pressure, 58+/-3 mmHg, P<0.05) conditions; PmvO2 profiles were modeled using a multicomponent exponential fitted with independent time delays. Hypotension reduced muscle blood flow at rest (24+/-8 vs. 6+/-1 ml-1.min-1.100 g-1 for N and H, respectively; P<0.05) and during contractions (74+/-20 vs. 22+/-4 ml-1.min-1.100 g-1 for N and H, respectively; P<0.05). H significantly decreased resting PmvO2 and steady-state contracting PmvO2(19.4+/-2.4 vs. 8.7+/-1.6 Torr for N and H, respectively, P<0.05). At the onset of contractions, H reduced the time delay (11.8+/-1.7 vs. 5.9+/-0.9 s for N and H, respectively, P<0.05) before the fall in PmvO2 and accelerated the rate of PmvO2 decrease (time constant, 12.6+/-1.4 vs. 7.3+/-0.9 s for N and H, respectively, P<0.05). Muscle Vo2 was reduced by 71% at rest and 64% with contractions in H vs. N, and O2 extraction during H averaged 78% at rest and 94% during contractions vs. 51 and 78% in N. These results demonstrate that H constrains the increase of skeletal muscle Qo2 relative to that of Vo2 at the onset of contractions, leading to a decreased PmvO2. According to Fick's law, this scenario will decrease blood-myocyte O2 flux, thereby slowing Vo2 kinetics and exacerbating the O2 deficit generated at exercise onset.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources