Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Jan;47(1):128-40.
doi: 10.1093/pcp/pci229. Epub 2005 Nov 12.

Physiological and metabolic adaptations of Potamogeton pectinatus L. tubers support rapid elongation of stem tissue in the absence of oxygen

Affiliations

Physiological and metabolic adaptations of Potamogeton pectinatus L. tubers support rapid elongation of stem tissue in the absence of oxygen

M H Dixon et al. Plant Cell Physiol. 2006 Jan.

Abstract

Tubers of Potamogeton pectinatus L., an aquatic pondweed, over-winter in the anoxic sediments of rivers, lakes and marshes. Growth of the pre-formed shoot that emerges from the tuber is remarkably tolerant to anoxia, with elongation of the stem occurring faster when oxygen is absent. This response, which allows the shoot to reach oxygenated waters, occurs despite a 69-81% reduction in the rate of ATP production, and it is underpinned by several physiological and metabolic adaptations that contribute to efficient energy usage. First, extension of the pre-formed shoot is the result of cell expansion, without the accumulation of new cellular material. Secondly, after over-wintering, the tuber and pre-formed shoot have the enzymes necessary for a rapid fermentative response at the onset of growth under anoxia. Thirdly, the incorporation of [(35)S]methionine into protein is greatly reduced under anoxia. The majority of the anoxically synthesized proteins differ from those in aerobically grown tissue, implying an extensive redirection of protein synthesis under anoxia. Finally, anoxia-induced cytoplasmic acidosis is prevented to an unprecedented degree. The adaptations of this anoxia-tolerant plant tissue emphasize the importance of the mechanisms that balance ATP production and consumption in the absence of oxygen.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources