Phase synchronization measurements using electroencephalographic recordings: what can we really say about neuronal synchrony?
- PMID: 16284413
- DOI: 10.1385/NI:3:4:301
Phase synchronization measurements using electroencephalographic recordings: what can we really say about neuronal synchrony?
Abstract
Phase synchrony analysis is a relatively new concept that is being increasingly used on neurophysiological data obtained through different methodologies. It is currently believed that phase synchrony is an important signature of information binding between distant sites of the brain, especially during cognitive tasks. Electroencephalographic (EEG) recordings are the most widely used recording technique for recording brain signals and assessing phase synchrony patterns. In this study, we address the suitability of phase synchrony analysis in EEG recordings. Using geometrical arguments and numerical examples, employing EEG and magnetoencephalographic data, we show that the presence of a common reference signal in the case of EEG recordings results in a distortion of the synchrony values observed, in that the amplitudes of the signals influence the synchrony measured, and in general destroys the intended physical interpretation of phase synchrony.
Similar articles
-
Enhanced synchrony in epileptiform activity? Local versus distant phase synchronization in generalized seizures.J Neurosci. 2005 Aug 31;25(35):8077-84. doi: 10.1523/JNEUROSCI.1046-05.2005. J Neurosci. 2005. PMID: 16135765 Free PMC article.
-
Dangerous phase.Neuroinformatics. 2005;3(4):315-8. doi: 10.1385/NI:3:4:315. Neuroinformatics. 2005. PMID: 16284414 Free PMC article.
-
Estimation of neural dynamics from MEG/EEG cortical current density maps: application to the reconstruction of large-scale cortical synchrony.IEEE Trans Biomed Eng. 2002 Sep;49(9):975-87. doi: 10.1109/TBME.2002.802013. IEEE Trans Biomed Eng. 2002. PMID: 12214887
-
Mining event-related brain dynamics.Trends Cogn Sci. 2004 May;8(5):204-10. doi: 10.1016/j.tics.2004.03.008. Trends Cogn Sci. 2004. PMID: 15120678 Review.
-
Dynamic phenotypes: time series analysis techniques for characterizing neuronal and behavioral dynamics.Neuroinformatics. 2006 Winter;4(1):119-28. doi: 10.1385/NI:4:1:119. Neuroinformatics. 2006. PMID: 16595862 Review.
Cited by
-
Enhanced synchrony in epileptiform activity? Local versus distant phase synchronization in generalized seizures.J Neurosci. 2005 Aug 31;25(35):8077-84. doi: 10.1523/JNEUROSCI.1046-05.2005. J Neurosci. 2005. PMID: 16135765 Free PMC article.
-
Phase lag index: assessment of functional connectivity from multi channel EEG and MEG with diminished bias from common sources.Hum Brain Mapp. 2007 Nov;28(11):1178-93. doi: 10.1002/hbm.20346. Hum Brain Mapp. 2007. PMID: 17266107 Free PMC article.
-
Methodological considerations when measuring and analyzing auditory steady-state responses with multi-channel EEG.Curr Res Neurobiol. 2022 Oct 29;3:100061. doi: 10.1016/j.crneur.2022.100061. eCollection 2022. Curr Res Neurobiol. 2022. PMID: 36386860 Free PMC article.
-
Altered resting state brain dynamics in temporal lobe epilepsy can be observed in spectral power, functional connectivity and graph theory metrics.PLoS One. 2013 Jul 26;8(7):e68609. doi: 10.1371/journal.pone.0068609. Print 2013. PLoS One. 2013. PMID: 23922658 Free PMC article.
-
Strong Relation Between an EEG Functional Connectivity Measure and Postmenstrual Age: A New Potential Tool for Measuring Neonatal Brain Maturation.Front Hum Neurosci. 2018 Jul 17;12:286. doi: 10.3389/fnhum.2018.00286. eCollection 2018. Front Hum Neurosci. 2018. PMID: 30065640 Free PMC article.
References
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources