Prediction discrepancies for the evaluation of nonlinear mixed-effects models
- PMID: 16284919
- PMCID: PMC1989778
- DOI: 10.1007/s10928-005-0016-4
Prediction discrepancies for the evaluation of nonlinear mixed-effects models
Abstract
Reliable estimation methods for non-linear mixed-effects models are now available and, although these models are increasingly used, only a limited number of statistical developments for their evaluation have been reported. We develop a criterion and a test to evaluate nonlinear mixed-effects models based on the whole predictive distribution. For each observation, we define the prediction discrepancy (pd) as the percentile of the observation in the whole marginal predictive distribution under H(0). We propose to compute prediction discrepancies using Monte Carlo integration which does not require model approximation. If the model is valid, these pd should be uniformly distributed over (0, 1) which can be tested by a Kolmogorov-Smirnov test. In a simulation study based on a standard population pharmacokinetic model, we compare and show the interest of this criterion with respect to the one most frequently used to evaluate nonlinear mixed-effects models: standardized prediction errors (spe) which are evaluated using a first order approximation of the model. Trends in pd can also be evaluated via several plots to check for specific departures from the model.
Figures




Similar articles
-
Fisher information matrix for nonlinear mixed effects multiple response models: evaluation of the appropriateness of the first order linearization using a pharmacokinetic/pharmacodynamic model.Stat Med. 2009 Jun 30;28(14):1940-56. doi: 10.1002/sim.3573. Stat Med. 2009. PMID: 19266541
-
Profile likelihood-based confidence intervals using Monte Carlo integration for population pharmacokinetic parameters.J Biopharm Stat. 2006;16(2):193-205. doi: 10.1080/10543400500508861. J Biopharm Stat. 2006. PMID: 16584067
-
Evaluation of the nonparametric estimation method in NONMEM VI.Eur J Pharm Sci. 2009 Apr 11;37(1):27-35. doi: 10.1016/j.ejps.2008.12.014. Epub 2008 Dec 30. Eur J Pharm Sci. 2009. PMID: 19159684
-
A new equivalence based metric for predictive check to qualify mixed-effects models.AAPS J. 2005 Oct 7;7(3):E523-31. doi: 10.1208/aapsj070353. AAPS J. 2005. PMID: 16353930 Free PMC article. Review.
-
Population pharmacokinetics II: estimation methods.Ann Pharmacother. 2004 Nov;38(11):1907-15. doi: 10.1345/aph.1E259. Epub 2004 Sep 14. Ann Pharmacother. 2004. PMID: 15367729 Review.
Cited by
-
Integrated Two-Analyte Population Pharmacokinetic Model for Antibody-Drug Conjugates in Patients: Implications for Reducing Pharmacokinetic Sampling.CPT Pharmacometrics Syst Pharmacol. 2016 Dec;5(12):665-673. doi: 10.1002/psp4.12137. Epub 2016 Nov 10. CPT Pharmacometrics Syst Pharmacol. 2016. PMID: 27863168 Free PMC article. Clinical Trial.
-
Are population pharmacokinetic and/or pharmacodynamic models adequately evaluated? A survey of the literature from 2002 to 2004.Clin Pharmacokinet. 2007;46(3):221-34. doi: 10.2165/00003088-200746030-00003. Clin Pharmacokinet. 2007. PMID: 17328581 Free PMC article.
-
Why should prediction discrepancies be renamed standardized visual predictive check?J Clin Pharmacol. 2012 Aug;52(8):1284-5; author reply 1286-7. doi: 10.1177/0091270011412963. Epub 2011 Sep 10. J Clin Pharmacol. 2012. PMID: 21908878 Free PMC article. No abstract available.
-
Prospective validation of a novel dosing scheme for intravenous busulfan in adult patients undergoing hematopoietic stem cell transplantation.Korean J Physiol Pharmacol. 2016 May;20(3):245-51. doi: 10.4196/kjpp.2016.20.3.245. Epub 2016 Apr 26. Korean J Physiol Pharmacol. 2016. PMID: 27162478 Free PMC article.
-
Evaluating renal function and age as predictors of amikacin clearance in neonates: model-based analysis and optimal dosing strategies.Br J Clin Pharmacol. 2016 Sep;82(3):793-805. doi: 10.1111/bcp.13016. Epub 2016 Jun 30. Br J Clin Pharmacol. 2016. PMID: 27198625 Free PMC article. Clinical Trial.
References
-
- Sheiner LB, Steimer JL. Pharmacokinetic/pharmacodynamic modeling in drug development. Annu Rev Pharmacol Toxicol. 2000;40:67–95. - PubMed
-
- Aarons L, Karlsson MO, Mentré F, Rombout F, Steimer JL, van Peer A. Cost B15 experts. Role of modelling and simulation in phase I drug development. Eur J Pharm Sci. 2001;13:115–122. - PubMed
-
- Holford NH, Kimko HC, Monteleone JP, Peck CC. Simulation of clinical trials. Annu Rev Pharmacol Toxicol. 2000;40:209–234. - PubMed
-
- Lesko LJ, Rowland M, Peck CC, Blaschke TF. Optimizing the science of drug development: opportunities for better candidate selection and accelerated evaluations in humans. J Clin Pharmacol. 2000;40:803–814. - PubMed
-
- Kimko HC, Duffull SB. Simulation for designing clinical trials: a pharmacokinetic - pharmacodynamic modeling prospective. Marcel Dekker; New York: 2003.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources