Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Oct-Nov;88(3-4):207-19.
doi: 10.1007/s10482-005-6501-3.

Conditions affecting cell surface properties of human intestinal bifidobacteria

Affiliations

Conditions affecting cell surface properties of human intestinal bifidobacteria

Enrica Canzi et al. Antonie Van Leeuwenhoek. 2005 Oct-Nov.

Abstract

The cell surface properties of human intestinal bifidobacteria have been characterized for 30 strains isolated from a fecal sample. Strain identification to the species level was obtained by restriction analysis of the amplified 16S rRNA gene and confirmed by DNA/DNA reassociation experiments. The isolates were grouped in four genetically homogeneous clusters whose members belonged to Bifidobacterium bifidum, Bifidobacterium adolescentis, Bifidobacterium longum and Bifidobacterium pseudocatenulatum species. Cell surface properties of Bifidobacterium strains were evaluated by determining the level of hydrophobicity, adhesion to hydrocarbons and contact angle measurements, and their autoaggregation ability. The results showed high and homogeneous level of hydrophobicity in all tested strains when contact angle measurements values were considered. On the contrary, autoaggregation assays and bacterial adhesion to hydrocarbons detected interesting differences in cell surface properties among the tested Bifidobacterium strains. The highest levels of autoaggregation, detected in B. bifidum and B. adolescentis strains, were strictly dependent on the pH of the medium. Moreover, protease treatment experiments suggested that proteins had a key role in the autoaggregating ability of B. bifidum and B. adolescentis strains.

PubMed Disclaimer

MeSH terms

LinkOut - more resources