Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2005 Dec;47(4):377-97.
doi: 10.1002/dev.20099.

Developmental changes in the functional brain responses of adolescents to images of high and low-calorie foods

Affiliations
Comparative Study

Developmental changes in the functional brain responses of adolescents to images of high and low-calorie foods

William D S Killgore et al. Dev Psychobiol. 2005 Dec.

Abstract

We examined cerebral responses to visually presented food images in children and adolescents. Eight healthy normal-weight females (ages 9-15) underwent functional magnetic resonance imaging (fMRI) while viewing photographs of high- and low-calorie foods and dining utensils. In general, food images yielded significant activation within the inferior orbitofrontal cortex, hippocampus, and fusiform gyri. High calorie food images activated the left hippocampus and subgenual cingulate, and age correlated positively with activity within the orbitofrontal cortex but negatively with activity within the anterior cingulate gyrus. Low-calorie foods activated the fusiform gyrus and demonstrated age-related increases in the left superior temporal gyrus and anterior cingulate. Utensils activated the fusiform gyrus and showed age-related increases in the prefrontal cortex. Data were also compared statistically to a sample of adults exposed to the same stimulus conditions. Findings support a developmental model of adolescent maturation whereby age-related changes in cerebral functioning develop from lower-order sensory processing toward higher-order processing of stimuli via prefrontal cortical systems involved in reward anticipation, self-monitoring, and behavioral inhibition.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources