Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Nov 11;20(3):449-60.
doi: 10.1016/j.molcel.2005.09.019.

Ribosome occupancy of the yeast CPA1 upstream open reading frame termination codon modulates nonsense-mediated mRNA decay

Affiliations
Free article

Ribosome occupancy of the yeast CPA1 upstream open reading frame termination codon modulates nonsense-mediated mRNA decay

Anthony Gaba et al. Mol Cell. .
Free article

Abstract

Saccharomyces cerevisiae CPA1 mRNA contains an upstream open reading frame (uORF) encoding the arginine attenuator peptide (AAP). Negative translational regulation of CPA1 occurs when the nascent AAP responds to arginine (Arg) by stalling ribosomes at the uORF termination codon. CPA1 expression is also controlled by nonsense-mediated mRNA decay (NMD). Using wild-type and decay-defective strains expressing CPA1-LUC, we determined how this uORF contributes to NMD control. Arg addition to media rapidly destabilized the CPA1 transcript in wild-type but not upf1delta cells. The wild-type uORF exerted translational control and induced NMD of CPA1-LUC; the mutated D13N uORF, which eliminates stalling and regulation, did not. Thus, regulation by NMD was not governed simply by ribosomes encountering the uORF terminator but appeared dependent on the AAP's ribosome-stalling ability. Improving the D13N uORF initiation context also promoted NMD. Hence, NMD appears to be triggered by increased ribosomal occupancy of the uORF termination codon.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources