Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 Aug;20(7):855-61.

Purification of rat megakaryocyte colony-forming cells using a monoclonal antibody against rat platelet glycoprotein IIb/IIIa

Affiliations
  • PMID: 1628703

Purification of rat megakaryocyte colony-forming cells using a monoclonal antibody against rat platelet glycoprotein IIb/IIIa

H Miyazaki et al. Exp Hematol. 1992 Aug.

Abstract

We recently reported the production and characterization of four monoclonal antibodies (MoAbs) against rat platelet glycoprotein IIb/IIIa (GPIIb/IIIa). In this study we developed a simple and efficient three-step procedure, based on positive selection by immunoadsorption (panning) using one MoAb, P55, to purify rat megakaryocyte colony-forming cells (megakaryocyte colony-forming units, CFU-MK) from normal bone marrow. Cells obtained after each step were assayed for their ability to form megakaryocyte colonies in the presence of Concanavalin A (Con A)-stimulated rat spleen cell-conditioned medium in soft agar cultures. Marrow cells were first separated on discontinuous Percoll gradients. Cells sedimented at densities between 1.063 and 1.082 g/ml were depleted of cells adherent to plastic tissue culture dishes. The nonadherent cells were further incubated on dishes coated with P55 MoAb. CFU-MK were enriched about 50-fold in the adsorbed cell fraction. This sequential fractionation procedure resulted in a 345-fold (range 276 to 412-fold) enrichment of rat CFU-MK over whole bone marrow cells. The average cloning efficiency of CFU-MK in the final fraction was about 7% (range 5%-9.2%) of the nucleated cells. The overall recovery of CFU-MK averaged 20% (range 9%-29%). The panning step provided a 46-fold enrichment of megakaryocyte burst-forming cells (megakaryocyte burst-forming units, BFU-MK), whose average cloning efficiency in the post-panning fraction was 0.14% (range 0.07%-0.2%). In addition, erythroid burst-forming cells (erythroid burst-forming units, BFU-E) were also significantly enriched by panning, but to a lesser degree than BFU-MK and CFU-MK. By contrast, granulocyte-macrophage colony-forming cells (granulocyte-macrophage colony-forming units, CFU-GM) and erythroid colony-forming cells (erythroid colony-forming units, CFU-E) were not enriched by panning. CFU-MK obtained after panning formed megakaryocyte colonies in the presence of recombinant rat interleukin 3 (rIL-3), mouse granulocyte-macrophage colony-stimulating factor (mGM-CSF), or human erythropoietin (hEPO), as has been reported for murine CFU-MK in whole marrow cells. The highly enriched populations of rat CFU-MK should thus provide a basis for the further study of the regulation of megakaryocytopoiesis.

PubMed Disclaimer

Similar articles

LinkOut - more resources