Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1992;6(3):123-34.
doi: 10.1111/j.1472-8206.1992.tb00103.x.

Potassium channels of the insulin-secreting B cell

Affiliations
Review

Potassium channels of the insulin-secreting B cell

P Petit et al. Fundam Clin Pharmacol. 1992.

Abstract

Ionic and electrical events play a central role in the stimulus-secretion coupling of the pancreatic B cell. Potassium permeability is critically involved in the regulation of B cell membrane potential and insulin secretion. In the absence of glucose, membrane potential remains stable, around -65 mV. This resting potential is mainly determined by the high potassium conductance of the membrane. The ATP generated by glucose metabolism in B cells blocks the K+(ATP) channels controlling resting membrane potential. Thus, glucose metabolism leads to closure of the ATP-dependent potassium channels; the resulting decrease in K+ permeability induces depolarization and opening of voltage-activated Ca-channels. The subsequent increase in Ca2+ influx raises the cytoplasmic concentration of free Ca2+, which in turn triggers exocytosis of secretory granules. Other types of K+ channels have also been identified in the B cell, such as voltage- and Ca(2+)-dependent K+ channels, which are not a target for the action of glucose, but may play a role in the repolarization of spikes. The modulation of insulin release by some hormones and neurotransmitters involves, among other mechanisms, an interference with the plasma membrane K+ conductance. Thus, galanine, somatostatin and adrenaline, which inhibit insulin release, increase K+ conductance by a G protein-dependent mechanism; both peptides were reported to open ATP-sensitive K+ channels in insulin-secreting cell line RINm5F. It was also observed that extracellular purine nucleotides could interfere with K+ channels. Among the various drugs interfering with insulin secretion, sulfonylureas, such as tolbutamide and glibenclamide, directly inhibit ATP-dependent K+ channels in the B cell membrane and thereby initiate insulin release. In contrast, potassium channel openers such as diazoxide, antagonize the effects of glucose by increasing K+ permeability of the B cell membrane. Furthermore, other classes of drugs have recently been shown to interact with K+ (ATP) channels. Thus, K+ channels of the pancreatic B cell, particularly ATP-dependent ones, play a crucial role in the electrophysiology of insulin secretion; they are an important target for pharmacological agents designed to modulate this secretion.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources