Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Jan;24(4):296-306.
doi: 10.1016/j.jmgm.2005.09.006. Epub 2005 Nov 11.

A connection rule for alpha-carbon coarse-grained elastic network models using chemical bond information

Affiliations

A connection rule for alpha-carbon coarse-grained elastic network models using chemical bond information

Jay I Jeong et al. J Mol Graph Model. 2006 Jan.

Abstract

A sparser but more efficient connection rule (called a bond-cutoff method) for a simplified alpha-carbon coarse-grained elastic network model is presented. One of conventional connection rules for elastic network models is the distance-cutoff method, where virtual springs connect an alpha-carbon with all neighbor alpha-carbons within predefined distance-cutoff value. However, though the maximum interaction distance between alpha-carbons is reported as 7 angstroms, this cutoff value can make the elastic network unstable in many cases of protein structures. Thus, a larger cutoff value (>11 angstroms) is often used to establish a stable elastic network model in previous researches. To overcome this problem, a connection rule for backbone model is proposed, which satisfies the minimum condition to stabilize an elastic network. Based on the backbone connections, each type of chemical interactions is considered and added to the elastic network model: disulfide bonds, hydrogen bonds, and salt-bridges. In addition, the van der Waals forces between alpha-carbons are modeled by using the distance-cutoff method. With the proposed connection rule, one can make an elastic network model with less than 7 angstroms distance cutoff, which can reveal protein flexibility more sharply. Moreover, the normal modes from the new elastic network model can reflect conformational changes of a given protein better than ones by the distance-cutoff method. This method can save the computational cost when calculating normal modes of a given protein structure, because it can reduce the total number of connections. As a validation, six example proteins are tested. Computational times and the overlap values between the conformational change and infinitesimal motion calculated by normal mode analysis are presented. Those animations are also available at UMass Morph Server (http://biomechanics.ecs.umass.edu/umms.html).

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources