Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 May 15;153(1):62-70.
doi: 10.1016/j.jneumeth.2005.10.005. Epub 2005 Nov 15.

Fluctuations in Xenopus oocytes protein phosphorylation levels during two-electrode voltage clamp measurements

Affiliations

Fluctuations in Xenopus oocytes protein phosphorylation levels during two-electrode voltage clamp measurements

Asi Cohen et al. J Neurosci Methods. .

Abstract

The biophysical and pharmacological properties of ion channels and transporters are often studied in exogenous expression systems using either the two-electrode voltage clamp (TEVC) in Xenopus oocytes or the patch clamp techniques. Cells machinery is trusted to produce active proteins that are correctly phosphorylated and glycosylated. However, native physiological cellular processes that might be altered during the course of the experiment are often ignored. Here, we detected and quantified the effects of various electrophysiological recording conditions on the phosphorylation levels of Xenopus oocytes proteins, including membrane proteins, as phosphorylation/dephosphorylation events modulate ion channels gating and cell surface expression. Two strategies were chosen to determine relative protein phosphorylation levels: a direct detection with a phospho-Ser/Thr PKA substrate antibody, and a functional method employing two different leak potassium channels as indicators, chosen based on their opposite responses to protein kinase phosphorylation. We report that holding potential, and bath solution properties such as pH, osmolarity, temperature and ion composition, dramatically affect protein phosphorylation levels in Xenopus oocytes. Our results might explain some of the fluctuations in the biophysical properties of expressed channels, often observed during electrophysiological measurements. Minimizing possible misinterpretations could be achieved using either mutated, kinase insensitive, channels or kinases/phosphatases modulators.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources