Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2005 Sep;2(5):935-50.
doi: 10.1517/17425247.2.5.935.

Pharmaceutical development and clinical effectiveness of a novel gel technology for transdermal drug delivery

Affiliations
Review

Pharmaceutical development and clinical effectiveness of a novel gel technology for transdermal drug delivery

Ingo Alberti et al. Expert Opin Drug Deliv. 2005 Sep.

Abstract

Transdermal gels are designed to deliver sustained drug amounts, resulting in systemically consistent levels. They represent an improvement compared with transdermal delivery by patches because they offer more dosage flexibility, less irritation potential and a better cosmetic appearance. Advanced Transdermal Delivery (ATD) gel technology was developed in order to provide enhanced passive skin permeation of various active drugs for the treatment of many conditions, including hypogonadism, female sexual dysfunction, postmenopausal symptoms, overactive bladder and anxiety. The technology consists of a combination of solvent systems and permeation enhancers enabling systemic drug delivery, and is covered by many patents. Pharmaceutical development of formulations based on the technology allowed optimisation of physicochemical parameters (rheological profile, pH) as well as skin permeation properties (type and concentration of permeation enhancers, thermodynamic activity of the drug). This gel technology has demonstrated to be efficient for many drugs, as shown in the preclinical and clinical pharmacokinetic studies presented in this technology evaluation.

PubMed Disclaimer

MeSH terms

LinkOut - more resources