Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2006 Feb;47(2):241-59.
doi: 10.1194/jlr.R500013-JLR200. Epub 2005 Nov 18.

Bile salt biotransformations by human intestinal bacteria

Affiliations
Free article
Review

Bile salt biotransformations by human intestinal bacteria

Jason M Ridlon et al. J Lipid Res. 2006 Feb.
Free article

Abstract

Secondary bile acids, produced solely by intestinal bacteria, can accumulate to high levels in the enterohepatic circulation of some individuals and may contribute to the pathogenesis of colon cancer, gallstones, and other gastrointestinal (GI) diseases. Bile salt hydrolysis and hydroxy group dehydrogenation reactions are carried out by a broad spectrum of intestinal anaerobic bacteria, whereas bile acid 7-dehydroxylation appears restricted to a limited number of intestinal anaerobes representing a small fraction of the total colonic flora. Microbial enzymes modifying bile salts differ between species with respect to pH optima, enzyme kinetics, substrate specificity, cellular location, and possibly physiological function. Crystallization, site-directed mutagenesis, and comparisons of protein secondary structure have provided insight into the mechanisms of several bile acid-biotransforming enzymatic reactions. Molecular cloning of genes encoding bile salt-modifying enzymes has facilitated the understanding of the genetic organization of these pathways and is a means of developing probes for the detection of bile salt-modifying bacteria. The potential exists for altering the bile acid pool by targeting key enzymes in the 7alpha/beta-dehydroxylation pathway through the development of pharmaceuticals or sequestering bile acids biologically in probiotic bacteria, which may result in their effective removal from the host after excretion.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources