Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Nov 29;44(47):15514-24.
doi: 10.1021/bi051377q.

High-yield functional expression of human sodium/d-glucose cotransporter1 in Pichia pastoris and characterization of ligand-induced conformational changes as studied by tryptophan fluorescence

Affiliations

High-yield functional expression of human sodium/d-glucose cotransporter1 in Pichia pastoris and characterization of ligand-induced conformational changes as studied by tryptophan fluorescence

Navneet K Tyagi et al. Biochemistry. .

Abstract

Studies on the structure-function relationship of transporters require the availability of sufficient amounts of the protein in a functional state. In this paper, we report the functional expression, purification, and reconstitution of the human sodium/d-glucose cotransporter1 (hSGLT1) in Pichia pastoris and ligand-induced conformational changes of hSGLT1 in solution as studied by intrinsic tryptophan fluorescence. hSGLT1 gene containing FLAG tag at position 574 was cloned into pPICZB plasmid, and the resulting expression vector pPICZB-hSGLT1 was introduced into P. pastoris strain GS115 by electroporation. Purification of recombinant hSGLT1 by nickel-affinity chromatography yields about 3 mg of purified recombinant hSGLT1 per 1-liter of cultured Pichia cells. Purified hSGLT1 migrates on SDS-PAGE with an apparent mass of 55 kDa. Kinetic analysis of hSGLT1 in proteoliposomes revealed sodium-dependent, secondary active, phlorizin-sensitive, and stereospecific alpha-methyl-d-glucopyranoside transport, demonstrating its full catalytic activity. The position of the maximum intrinsic tryptophan fluorescence and titration with hydrophilic collisional quenchers KI, acrylamide, and trichloroethanol suggested that most of Trps in hSGLT1 in solution are in a hydrophobic environment. In the presence of sodium, sugars that have been identified earlier as substrate for the transporter increase intrinsic fluorescence in a saturable manner by a maximum of 15%. alpha-Methyl-d-glucopyranoside had the highest affinity (K(d) = 0.71 mM), followed by d-glucose, d-galactose, d-mannose, and d-allose which showed a much lower affinity. l-Glucose was without effect. d-Glucose also increased the accessibility of the Trps to hydrophilic collisional quenchers. On the contrary phlorizin, the well-established inhibitor of SGLT1, decreased intrinsic fluorescence by a maximum of 50%, and induced a blue shift of maximum (5 nm). Again, the effects were sodium-dependent and saturable and a high affinity K(d) of 5 muM was observed. In addition the surface of hSGLT1 was labeled with 1-anilinonaphthalene-8-sulfonic acid, a reporter molecule for the surface hydrophobicity. In the presence of sodium, addition of d-glucose decreased ANS fluorescence whereas phlorizin increased ANS fluorescence. Thus three conformational states of SGLT1 could be defined which differ in their packing density and hydrophobicity of their surface. They reflect properties of the empty carrier, the d-glucose loaded carrier facing the outside of membrane and the complex of the outside-orientated carrier with phlorizin.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources